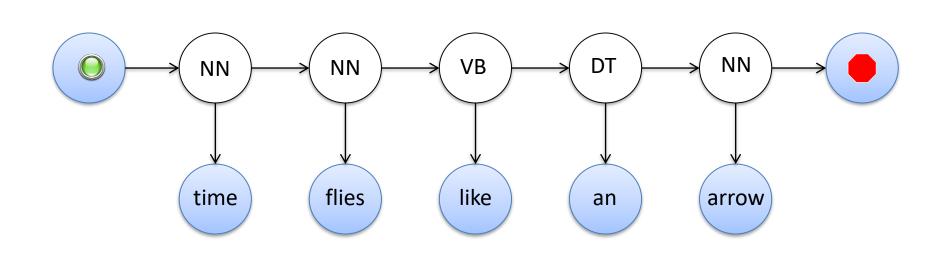
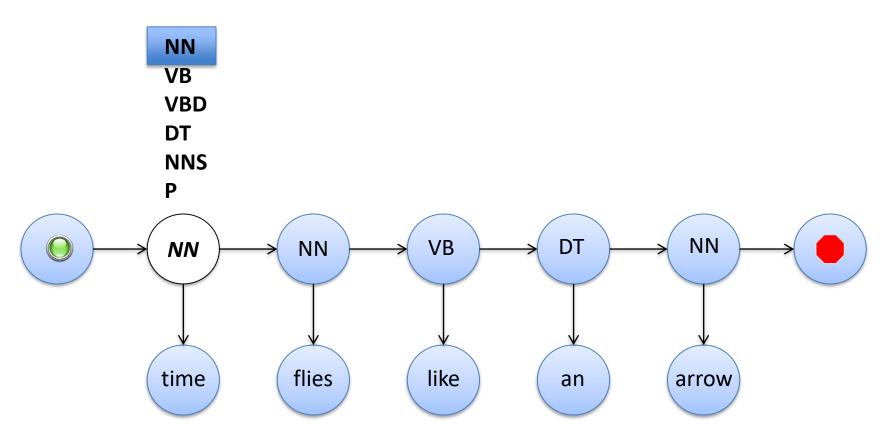
Approximate Inference: Randomized Methods

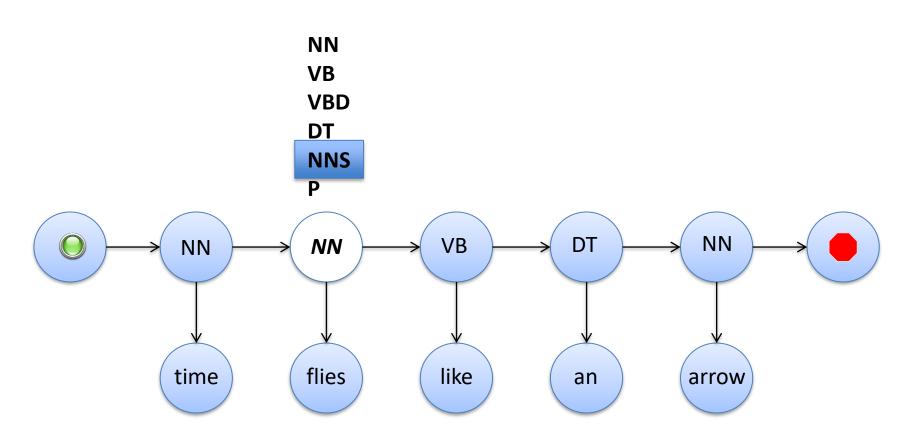
Topics

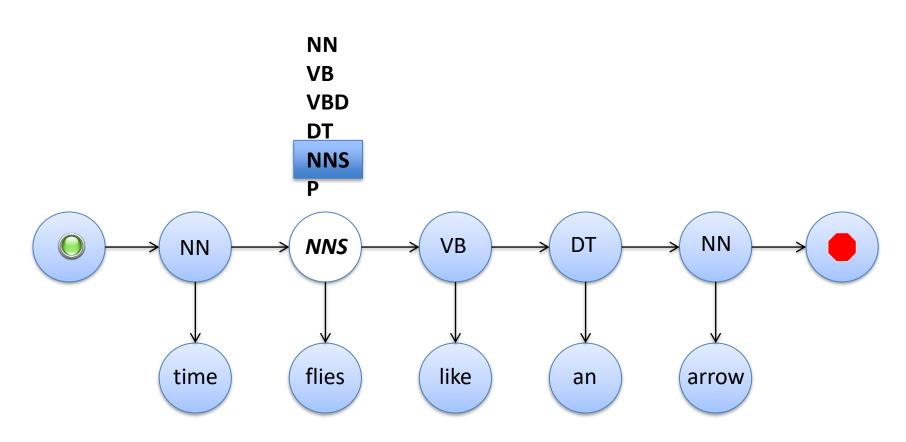
- Hard Inference
 - Local search & hill climbing
 - Stochastic hill climbing / Simulated Annealing
- Soft Inference
 - Monte-Carlo approximations
 - Markov-Chain Monte Carlo methods
 - Gibbs sampling
 - Metropolis Hastings sampling
 - Importance Sampling

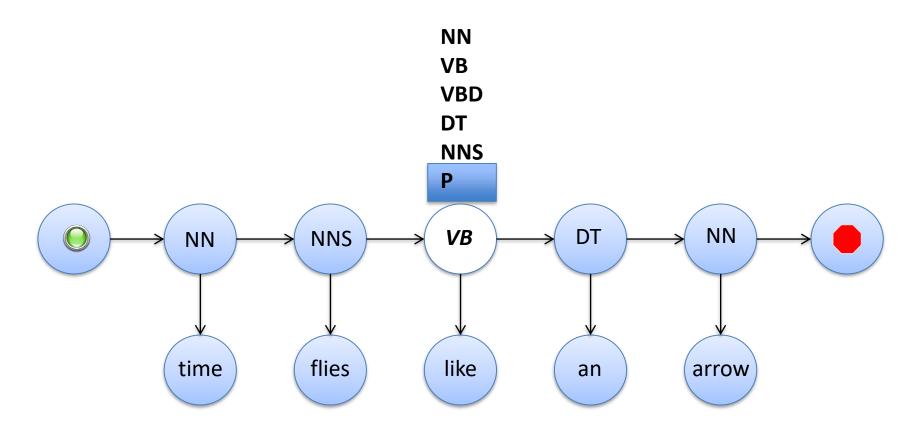
- Start with a candidate solution
- Until (time > limit) or no changes possible:
 - Apply a local change to generate a new candidate solutions
 - Pick the one with the highest score ("steepest ascent")
- A neighborhood function maps a search state (+ optionally, algorithm state) to a set of neighboring states
 - computing the score (cf. unnormalized probability) of the new state is inexpensive

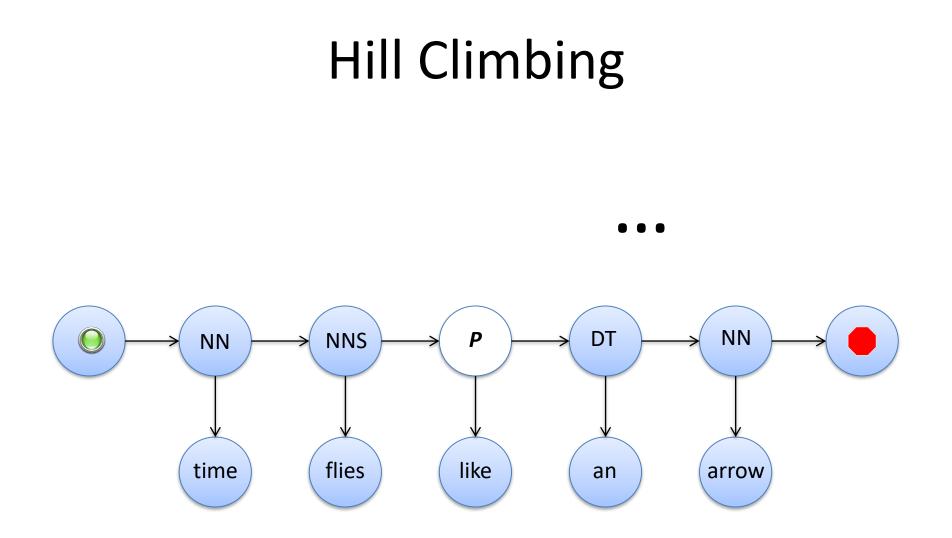












Hill Climbing: Sequence Labeling

- Start with greedy assignment O(n|L|)
- While stop criterion not met

- For each label position (*n* of them)

• Consider changing to any label, including no change

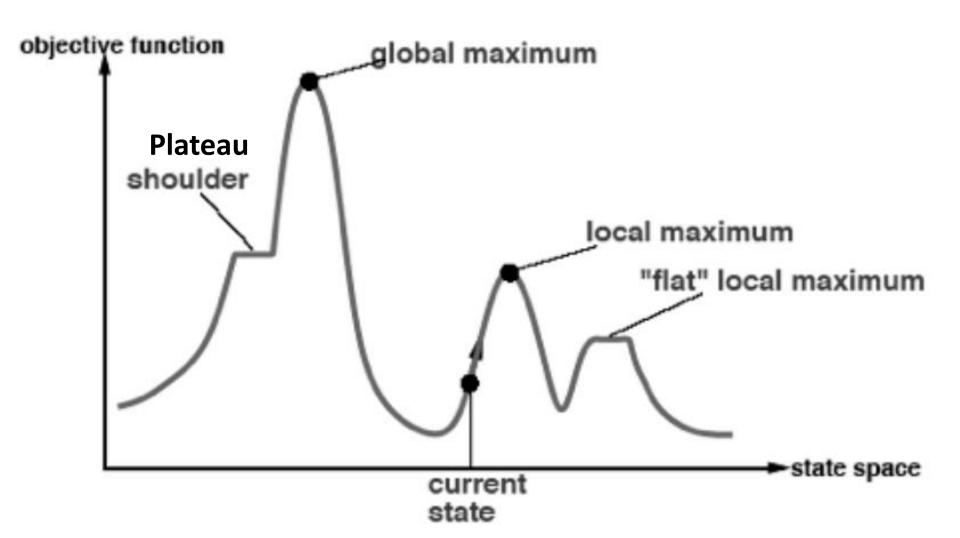
• When should we stop?

Fixed number of iterations

- Let's say we run the previous algorithm for |L| iterations
 - The runtime is $O(n|L|^2)$
 - The Viterbi runtime for a bigram model is $O(n|L|^2)$
- Here's where it gets interesting:
 - Now imagine we were using a k-gram model
 Viterbi runtime: O(n|L|^k)
 - We could get arbitrarily better speedup!

- Pros
 - This is an "any time" algorithm: stop any time and you will have a solution
- Cons
 - There is no guarantee that we found a good solution
 - Local optima: to get to a good solution, you have to go through a bad scoring solution
 - Plateau: you get caught on a plateau and you can either go down or "stay the same"

In Pictures

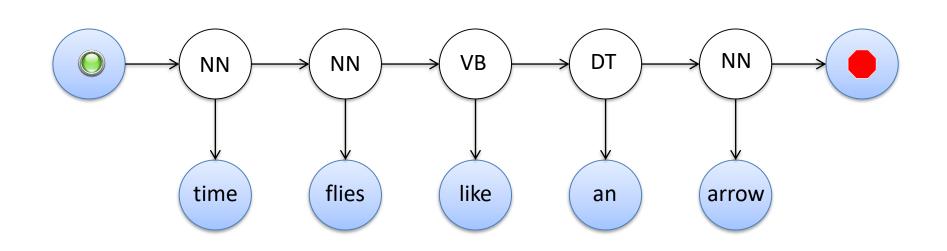


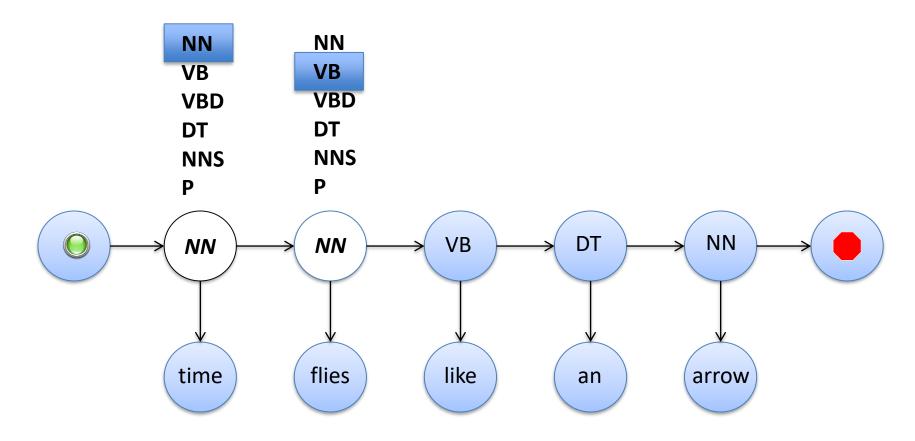
Local Optima: Random Restarts

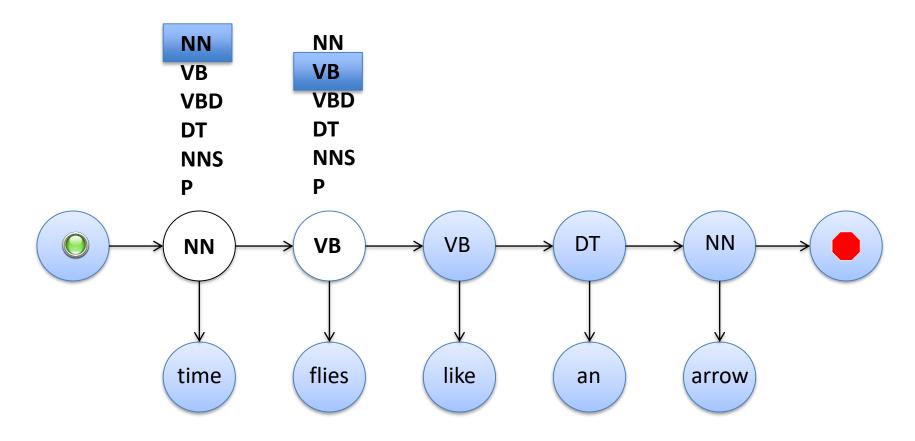
- Start from lots of different places
- Look at the score of the best solution
- Pros
 - Easy to parallelize
 - Easy to implement
- Cons
 - Lots of computational work

Local Optima: Take Bigger Steps

- We can use any neighborhood function!
- Why not use a bigger neighborhood function?
 E.g., consider two words at once







Neighborhood Sizes

- In general: neighborhood size is exponential in the number of variables you are considering changing
- But, sometimes you can use dynamic programming (or other combinatorial algorithms) to search exponential spaces in polytime
 - Consider a sequence labeling problem where you have a bigram Markov model + some global features
 - Example: NER with constraints that say that all phrases should have the same label across a document

Stochastic Hill Climbing

- In general, there is no neighborhood function that will give you correct and efficient local search
 - Hill climbing may still be good enough!
- Another variation
 - Replace the arg max with a stochastic decision:
 pick low-scoring decisions with some probability

Simulated Annealing

View configurations as having an "energy"

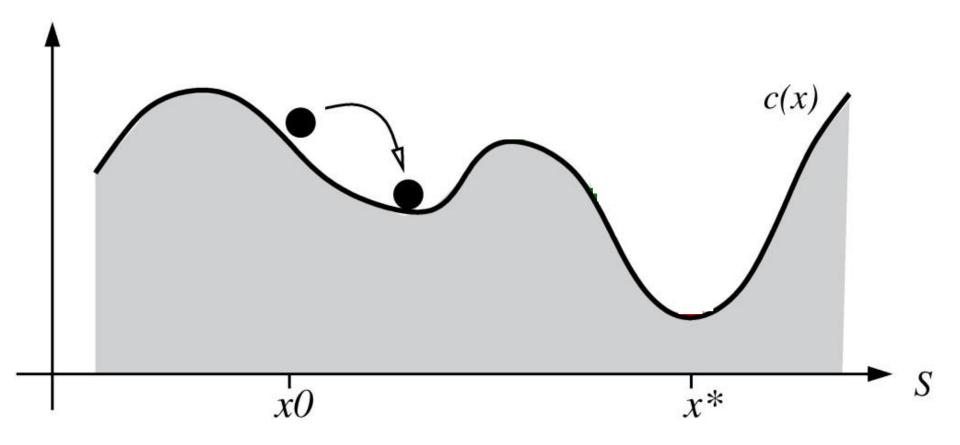
$$E(\mathbf{x}) = \log Z - \operatorname{score}(\mathbf{x})$$

• Pick change in state by sampling

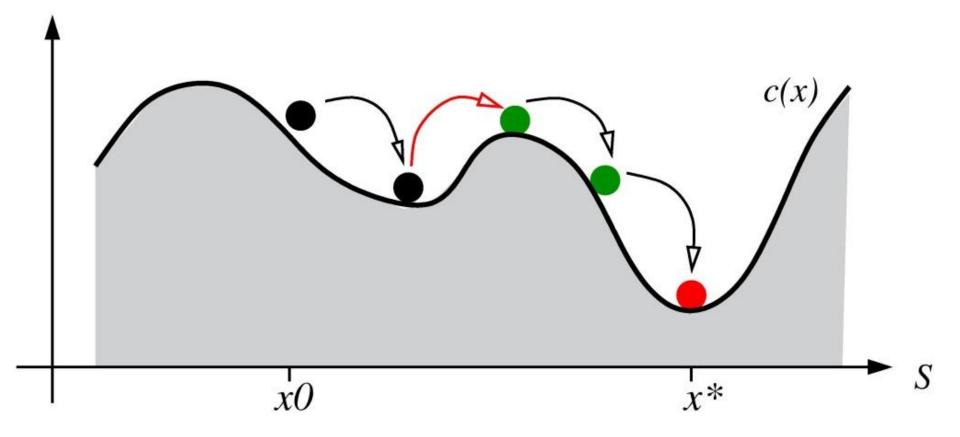
$$\propto e^{\frac{\Delta E}{T}}$$

- Start with a high temperature (model specific)
- Gradually cool down to T=0
- Important: keep track of best scoring x so far!

In Pictures



In Pictures



Simulated Annealing

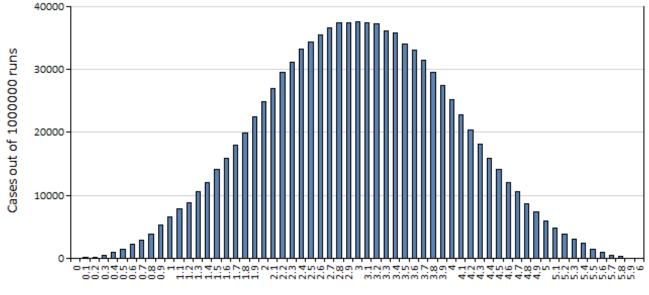
- We don't have to compute the partition function, just differences in energy
- In general:
 - Better solutions for slower annealing schedules
 - For probabilistic models, T=1 corresponds to Gibbs sampling (more in a few slides), provided certain conditions are met on the neighborhood function

Whither Soft Inference?

- As we discussed, hard inference isn't the only game in town
- We can use local search to approximate soft inference as well
 - Posterior distributions
 - Expected values of functions under distributions
- This brings us to the family of Monte Carlo techniques

Monte Carlo Approximations

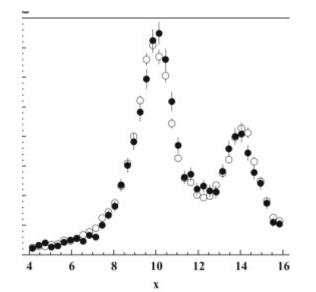
- Monte Carlo techniques let you
 - Approximately represent a distribution p(x) [x can be discrete, continuous, or mixed] using a collection of *N* samples from p(x)
 - Approximate marginal probabilities of x using samples from a joint distribution p(x,y)
 - Approximate expected values of f(x) using samples from p(x)



Monte Carlo approximation of a Gaussian distribution:

Buckets

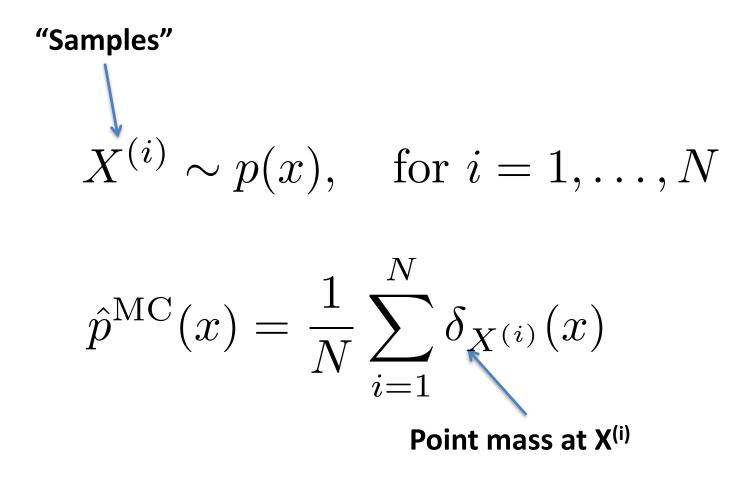
Monte Carlo approximation of a ??? distribution:

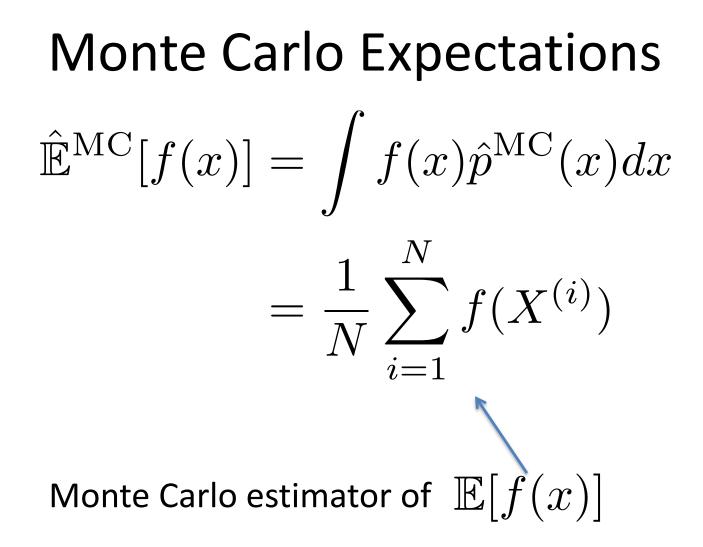


Monte Carlo Questions

- How do we generate samples from the target distribution?
 - Direct (or "perfect") sampling
 - Markov-Chain MC methods (Gibbs, Metropolis-Hastings)
- How good are the approximations?

Monte Carlo Approximations





Monte Carlo Expectations

- Nice properties
 - Estimator is **unbiased**
 - Estimator is consistent
 - Approximation error decreases at a rate of O(1/N), independent of the dimension of X
- Problems
 - We don't generally know how to sample from p
 - When we do, the sampling scheme would be linear in dim(X)

Direct Sampling from p

- Sampling from *p* is generally hard
 - We may need to compute some very hard marginal quantities
- Claim. For every Viterbi/Inside-Outside algorithm there is a sampling algorithm that you get with the same "start up" cost

– There is a question about this in the HW...

 But we want to use MC approximations when we can't run Inside-Outside!

Gibbs Sampling

- Markov chain Monte Carlo (MCMC) method
 - Build a Markov model
 - The states represent samples from *p*
 - Transitions = Neighborhoods from local search!
 - Transition probabilities constructed such that the MM's stationary distribution is p
 - MCMC samples are correlated
 - **Burn in Period:** Taking every *m* samples can make samples more independent.

Gibbs Sampling

- Gibbs sampling relies on the fact that sampling from p(a|b,c,d,e,f) is easier than sampling from p(a,b,c,d,e,f)
- Algorithm
 - We want N samples from $\mathbf{X} = \{X_1, \dots, X_m\}$ The *i*th sample is $\mathbf{x}^{(i)} = \{x_1^{(i)}, \dots, x_m^{(i)}\}$

 - Start with some $\mathbf{x}(0)$
 - For each sample *i*=1,...,*N*
 - For each variable j=1,...,m Sample $x_i^{(i)} \sim p(x_j \mid \mathbf{x}^{(i)} \setminus x_j^{(i)})$

The Beauty Part: No More Partitions

$$p(\mathbf{x}) \doteq \frac{u(\mathbf{x})}{Z}$$

$$p(x_j \mid \mathbf{x} \setminus x_j) = \frac{p(\mathbf{x})}{\sum_{x'_j \in \mathcal{X}_j} p(\mathbf{x} \setminus x_j, x'_j)}$$

$$= \frac{u(\mathbf{x})/Z}{\sum_{x'_j \in \mathcal{X}_j} u(\mathbf{x} \setminus x_j, x'_j)/Z}$$

$$= \frac{u(\mathbf{x})}{\sum_{x'_j \in \mathcal{X}_j} u(\mathbf{x} \setminus x_j, x'_j)}$$

Ensuring Detailed Balance

- **Option 1**: Visit all variables in a deterministic order that is independent of their current settings
- **Option 2**: Visit variables uniformly at random, independently of their current settings
- **Option 3**: Unfortunately, both of the above may not be feasible
 - Other orders are possible, but you have to prove that detailed balance is obtained. This can be a pain.

Using Proposal Distributions

- Idea: sample from a distribution that "looks like" the distribution you want to sample from, i.e. $p(x_j \mid \mathbf{x} \setminus x_j)$ or p(x)
 - Common trade off: good approximation of p vs.
 easy to sample from
- Then perform some kind of correction using p (or, usually, p*C)
 - Metropolis-Hastings: possibly reject sample
 - Importance sampling: reweight sample

What Proposal Distribution?

$$p(\mathbf{x}) > 0 \implies q(\mathbf{x}) > 0$$

- Specifics depend on your problem
 - Sample from a bigram HMM's posterior distribution as a proposal for a k-gram HMM
 - Sample from a Gaussian as a proposal for some other continuous density
 - Sample from an unconditional distribution as a proposal for a conditional distribution
- In general: good proposal distributions have heavier tails

Metropolis Hastings Sampling

- Very simple strategy for incorporating a proposal distribution
- Can be used to propose full ensemble of variables, a single variable, or anything in between
- Standard uses
 - Sampling continuous variables (e.g., sample from Gaussian and accept into non-Gaussian distribution)
 - Sample sequence or tree from PCFG/HMM and accept into model with non-local factors

Metropolis Hastings Sampling

- The MH algorithm works as follows
- Sample $\mathbf{x}' \sim q(\mathbf{x}' \mid \mathbf{x})$
 - Accept this sample with probability

$$A(\mathbf{x} \to \mathbf{x}') = \min\left\{1, \frac{p(\mathbf{x}')}{p(\mathbf{x})} \frac{q(\mathbf{x} \mid \mathbf{x}')}{q(\mathbf{x}' \mid \mathbf{x})}\right\}$$

- If accepted, update x
- Otherwise **x** remains the same

Metropolis Hastings Sampling

• Note: with an unconditional proposal

$$A(\mathbf{x} \to \mathbf{x}') = \min\left\{1, \frac{p(\mathbf{x}')}{p(\mathbf{x})} \frac{q(\mathbf{x})}{q(\mathbf{x}')}\right\}$$

 Also note: you only need to be able to sample from p and q and evaluate them up to a fixed factor (e.g., partition)

Metropolis-Hastings

- Pros
 - A paper cited 18,000 times can't be wrong!
 - Hand-crafted proposal distributions give you the ability to improve performance
- Cons
 - Keep track of your rejections
 - Variance of computed quantities can be exceedingly high

- MH samples can be highly correlated -> high variance of MC estimates of expectations
- Importance sampling is a technique for reducing variance (albeit by increasing bias)
- Intuition
 - Rather than rejecting bad samples, down-weight them appropriately
- Benefits
 - Lower variance
 - Biased, but still consistent
 - Estimate of Z

_

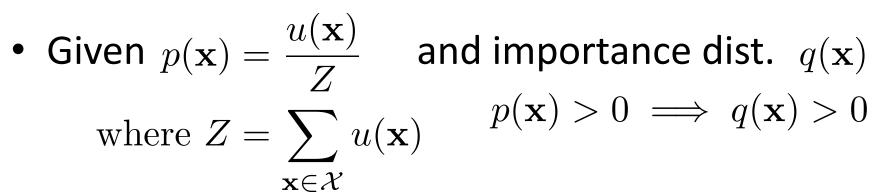
- -

• Given
$$p(\mathbf{x}) = \frac{u(\mathbf{x})}{Z}$$

where $Z = \sum_{\mathbf{x} \in \mathcal{X}} u(\mathbf{x})$

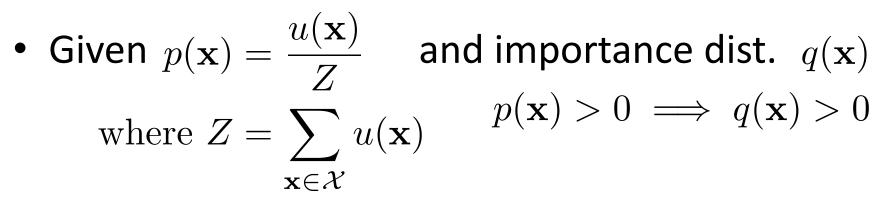
-

-



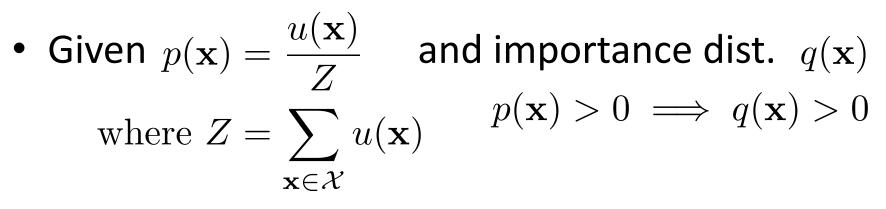
- - -

- - - -



• We define the **unnormalized weight** function $u(\mathbf{x})$

$$w(\mathbf{x}) = \frac{u(\mathbf{x})}{q(\mathbf{x})}$$



• We define the **unnormalized weight** function $u(\mathbf{x})$

$$w(\mathbf{x}) = \frac{u(\mathbf{x})}{q(\mathbf{x})}$$

• We can now write

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) q(\mathbf{x})$$

Importance Sampling $Z = \sum w(\mathbf{x})q(\mathbf{x})$

Notice that this has the form of an expected value of w(x) under q:

$$Z = \mathbb{E}_{q(\cdot)} w(\mathbf{x})$$

 $\mathbf{x} {\in} \mathcal{X}$

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} w(\mathbf{x}) q(\mathbf{x})$$

Notice that this has the form of an expected value of w(x) under q:

$$Z = \mathbb{E}_{q(\cdot)} w(\mathbf{x})$$

We can replace this with a Monte Carlo estimate

$$\hat{Z} = \hat{\mathbb{E}}_{q(\cdot)}^{\mathrm{MC}} w(\mathbf{x})$$
$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)})$$

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)})$$

This lets us derive the following approximation:

$$\hat{p}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{w(\mathbf{x})\hat{q}(\mathbf{x})}{\hat{Z}}$$

$$\hat{Z} = \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}^{(i)})$$

This lets us derive the following approximation:

$$\hat{p}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{w(\mathbf{x})\hat{q}(\mathbf{x})}{\hat{Z}}$$

Intuitively, we have reweighted each sample $\mathbf{x}^{(i)}$ from $q(\mathbf{x})$ with an **importance weight**

$$\frac{w(\mathbf{x}^{(i)})}{\sum_{j=1}^{N} w(\mathbf{x}^{(j)})}$$

IS Expectations are defined straightforwardly as

$$\hat{\mathbb{E}}_{p(\cdot)}^{\text{IS}}[f(\mathbf{x})] = \sum_{i=1}^{N} \left[\frac{w(\mathbf{x}^{(i)})}{\sum_{j=1}^{N} w(\mathbf{x}^{(j)})} f(\mathbf{x}^{(i)}) \right]$$
$$= \frac{1}{\hat{Z}} \sum_{i=1}^{N} w(\mathbf{x}^{(i)}) f(\mathbf{x}^{(i)})$$
$$= \frac{1}{\hat{Z}} \sum_{i=1}^{N} \frac{u(\mathbf{x}^{(i)})}{q(\mathbf{x}^{(i)})} f(\mathbf{x}^{(i)})$$

- You can show
 - That the IS estimator is **biased**
 - That the IS estimator is consistent
 - That the IS estimator obeys a central limit theorem with asymptotic variance

$$\frac{1}{N} \sum_{\mathbf{x} \in \mathcal{X}} \frac{p^2(\mathbf{x})}{q(\mathbf{x})} \left[f(\mathbf{x}) - \mathbb{E}_{p(\mathbf{x}')} f(\mathbf{x}') \right]^2$$

That the IS estimator is more efficient than rejection sampling

Summary

- Monte Carlo techniques are a huge field of research
 - This is a survey of the important ones that are used in structured prediction
- We will return to these methods when we talk about Bayesian unsupervised learning