
Approximate Inference:
Randomized Methods



Topics

• Hard Inference
– Local search & hill climbing

– Stochastic hill climbing / Simulated Annealing

• Soft Inference
– Monte-Carlo approximations

– Markov-Chain Monte Carlo methods
• Gibbs sampling

• Metropolis Hastings sampling

– Importance Sampling



Local Search

• Start with a candidate solution
• Until (time > limit) or no changes possible:

– Apply a local change to generate a new candidate 
solutions

– Pick the one with the highest score (“steepest 
ascent”)

• A neighborhood function maps a search state (+ 
optionally, algorithm state) to a set of 
neighboring states
– computing the score (cf. unnormalized probability) of 

the new state is inexpensive



Hill Climbing

time flies like an arrow

NN NN VB DT NN



Hill Climbing

time flies like an arrow

NN NN VB DT NN

NN
VB
VBD
DT
NNS
P



Hill Climbing

time flies like an arrow

NN NN VB DT NN

NN
VB
VBD
DT
NNS
P



Hill Climbing

time flies like an arrow

NN NNS VB DT NN

NN
VB
VBD
DT
NNS
P



Hill Climbing

time flies like an arrow

NN NNS VB DT NN

NN
VB
VBD
DT
NNS
P



Hill Climbing

time flies like an arrow

NN NNS P DT NN

…



Hill Climbing: Sequence Labeling

• Start with greedy assignment – O(n|L|)

• While stop criterion not met

– For each label position (n of them)

• Consider changing to any label, including no change

• When should we stop?



Fixed number of iterations

• Let’s say we run the previous algorithm for |L| 
iterations

– The runtime is O(n|L|2)

– The Viterbi runtime for a bigram model is O(n|L|2)

• Here’s where it gets interesting:

– Now imagine we were using a k-gram model
Viterbi runtime: O(n|L|k)

– We could get arbitrarily better speedup!



Local Search

• Pros
– This is an “any time” algorithm: stop any time and 

you will have a solution

• Cons
– There is no guarantee that we found a good 

solution

– Local optima: to get to a good solution, you have 
to go through a bad scoring solution

– Plateau: you get caught on a plateau and you can 
either go down or “stay the same”



In Pictures

Plateau



Local Optima: Random Restarts

• Start from lots of different places

• Look at the score of the best solution

• Pros

– Easy to parallelize

– Easy to implement

• Cons

– Lots of computational work



Local Optima: Take Bigger Steps

• We can use any neighborhood function!

• Why not use a bigger neighborhood function?

– E.g., consider two words at once
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Neighborhood Sizes

• In general: neighborhood size is exponential in 
the number of variables you are considering 
changing

• But, sometimes you can use dynamic 
programming (or other combinatorial algorithms) 
to search exponential spaces in polytime
– Consider a sequence labeling problem where you 

have a bigram Markov model + some global features
– Example: NER with constraints that say that all 

phrases should have the same label across a 
document



Stochastic Hill Climbing

• In general, there is no neighborhood function 
that will give you correct and efficient local 
search

– Hill climbing may still be good enough!

• Another variation

– Replace the arg max with a stochastic decision: 
pick low-scoring decisions with some probability



Simulated Annealing

• View configurations as having an “energy”

• Pick change in state by sampling

• Start with a high temperature (model specific)

• Gradually cool down to T=0

• Important: keep track of best scoring x so far!
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Simulated Annealing

• We don’t have to compute the partition 
function, just differences in energy

• In general:

– Better solutions for slower annealing schedules

– For probabilistic models, T=1 corresponds to Gibbs 
sampling (more in a few slides), provided certain 
conditions are met on the neighborhood function



Whither Soft Inference?

• As we discussed, hard inference isn’t the only 
game in town

• We can use local search to approximate soft 
inference as well

– Posterior distributions

– Expected values of functions under distributions

• This brings us to the family of Monte Carlo 
techniques



Monte Carlo Approximations

• Monte Carlo techniques let you

– Approximately represent a distribution p(x) [x can 
be discrete, continuous, or mixed] using a 
collection of N samples from p(x)

– Approximate marginal probabilities of x using 
samples from a joint distribution p(x,y)

– Approximate expected values of f(x) using samples 
from p(x)



Monte Carlo approximation of a Gaussian distribution:

Monte Carlo approximation of a ??? distribution:



Monte Carlo Questions

• How do we generate samples from the target 
distribution?

– Direct (or “perfect”) sampling

– Markov-Chain MC methods (Gibbs, Metropolis-
Hastings)

• How good are the approximations?



Monte Carlo Approximations

“Samples”

Point mass at X(i)



Monte Carlo Expectations

Monte Carlo estimator of



Monte Carlo Expectations

• Nice properties
– Estimator is unbiased

– Estimator is consistent

– Approximation error decreases at a rate of
O(1/N), independent of the dimension of X

• Problems
– We don’t generally know how to sample from p

– When we do, the sampling scheme would be 
linear in dim(X)



Direct Sampling from p

• Sampling from p is generally hard
– We may need to compute some very hard 

marginal quantities

• Claim. For every Viterbi/Inside-Outside 
algorithm there is a sampling algorithm that 
you get with the same “start up” cost
– There is a question about this in the HW…

• But we want to use MC approximations when 
we can’t run Inside-Outside!



Gibbs Sampling

• Markov chain Monte Carlo (MCMC) method

– Build a Markov model

• The states represent samples from p

• Transitions = Neighborhoods from local search!

• Transition probabilities constructed such that the MM’s 
stationary distribution is p

– MCMC samples are correlated

• Burn in Period: Taking every m samples can make 
samples more independent.



Gibbs Sampling

• Gibbs sampling relies on the fact that 
sampling from p(a|b,c,d,e,f) is easier than 
sampling from p(a,b,c,d,e,f)

• Algorithm
– We want N samples from

– The ith sample is

– Start with some  x(0)

– For each sample i=1,…,N
• For each variable j=1,…,m

– Sample 



The Beauty Part: No More Partitions



Ensuring Detailed Balance

• Option 1: Visit all variables in a deterministic 
order that is independent of their current settings

• Option 2: Visit variables uniformly at random, 
independently of their current settings

• Option 3: Unfortunately, both of the above may 
not be feasible

– Other orders are possible, but you have to prove that 
detailed balance is obtained. This can be a pain.



Using Proposal Distributions

• Idea: sample from a distribution that “looks 
like” the distribution you want to sample 
from, i.e.                              or

– Common trade off: good approximation of p vs. 
easy to sample from

• Then perform some kind of correction using p
(or, usually, p*C)

– Metropolis-Hastings: possibly reject sample

– Importance sampling: reweight sample



What Proposal Distribution?

• Specifics depend on your problem
– Sample from a bigram HMM’s posterior distribution as 

a proposal for a k-gram HMM
– Sample from a Gaussian as a proposal for some other 

continuous density
– Sample from an unconditional distribution as a 

proposal for a conditional distribution

• In general: good proposal distributions have 
heavier tails



Metropolis Hastings Sampling

• Very simple strategy for incorporating a proposal 
distribution

• Can be used to propose full ensemble of 
variables, a single variable, or anything in 
between

• Standard uses
– Sampling continuous variables (e.g., sample from 

Gaussian and accept into non-Gaussian distribution)

– Sample sequence or tree from PCFG/HMM and accept 
into model with non-local factors



Metropolis Hastings Sampling

• The MH algorithm works as follows

• For each block of variables you are resampling

– Sample

– Accept this sample with probability

– If accepted, update x

– Otherwise x remains the same



Metropolis Hastings Sampling

• Note: with an unconditional proposal

• Also note: you only need to be able to sample 
from p and q and evaluate them up to a fixed 
factor (e.g., partition)



Metropolis-Hastings

• Pros

– A paper cited 18,000 times can’t be wrong!

– Hand-crafted proposal distributions give you the 
ability to improve performance

• Cons

– Keep track of your rejections

– Variance of computed quantities can be 
exceedingly high



Importance Sampling

• MH samples can be highly correlated -> high 
variance of MC estimates of expectations

• Importance sampling is a technique for reducing 
variance (albeit by increasing bias)

• Intuition
– Rather than rejecting bad samples, down-weight them 

appropriately

• Benefits
– Lower variance
– Biased, but still consistent
– Estimate of Z
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Notice that this has the form of an expected value
of w(x) under q:

We can replace this with a Monte Carlo estimate
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x(i) from q(x) with an importance weight
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Importance Sampling

IS Expectations are defined straightforwardly as 



Importance Sampling

• You can show
– That the IS estimator is biased

– That the IS estimator is consistent

– That the IS estimator obeys a central limit 
theorem with asymptotic variance

– That the IS estimator is more efficient than 
rejection sampling



Summary

• Monte Carlo techniques are a huge field of 
research

– This is a survey of the important ones that are 
used in structured prediction

• We will return to these methods when we talk 
about Bayesian unsupervised learning


