Approximate Inference:
Randomized Methods

Topics

* Hard Inference
— Local search & hill climbing
— Stochastic hill climbing / Simulated Annealing

e Soft Inference
— Monte-Carlo approximations

— Markov-Chain Monte Carlo methods
* Gibbs sampling
* Metropolis Hastings sampling

— Importance Sampling

Local Search

e Start with a candidate solution

e Until (time > limit) or no changes possible:

— Apply a local change to generate a new candidate
solutions

— Pick the one with the highest score (“steepest
ascent”)

* A neighborhood function maps a search state (+
optionally, algorithm state) to a set of
neighboring states

— computing the score (cf. unnormalized probability) of
the new state is inexpensive

Hill Climbing

(=)=)=~~~
© ©® © o0 @

Hill Climbing
NN

VB
VBD
DT
NNS

(o))
oW e @

Hill Climbing

NN
VB
VBD
DT

P

Hill Climbing

NN
VB
VBD
DT

P

Hill Climbing

NN
VB
VBD
DT
NNS

-89
© OO0 e

Hill Climbing

O -0—-0-@
© ©® © o0 @

Hill Climbing: Sequence Labeling

e Start with greedy assignment—O(n|L|)
* While stop criterion not met

— For each label position (n of them)
* Consider changing to any label, including no change

* When should we stop?

Fixed number of iterations

* Let’s say we run the previous algorithm for |L|
iterations

— The runtime is O(n|L|?)
— The Viterbi runtime for a bigram model is O(n|L|?)
* Here’s where it gets interesting:

— Now imagine we were using a k-gram model
Viterbi runtime: O(n|L|*)

— We could get arbitrarily better speedup!

Local Search

* Pros
— This is an “any time” algorithm: stop any time and
you will have a solution
* Cons

— There is no guarantee that we found a good
solution

— Local optima: to get to a good solution, you have
to go through a bad scoring solution

— Plateau: you get caught on a plateau and you can
either go down or “stay the same”

In Pictures

objecﬂxc function global maximum

Plateau
shoulder

local maximum

"flat" local maximum

current
state

Local Optima: Random Restarts

Start from lots of different places
Look at the score of the best solution
Pros

— Easy to parallelize
— Easy to implement
Cons

— Lots of computational work

Local Optima: Take Bigger Steps

 We can use any neighborhood function!
 Why not use a bigger neighborhood function?

— E.g., consider two words at once

Local Search

(=)=)=~~~
© ©® © o0 @

Local Search

"
VB
VBD VBD
DT DT

NNS NNS
P P

Local Search

"
VB
VBD VBD
DT DT

NNS NNS
P P

Neighborhood Sizes

* In general: neighborhood size is exponential in
the number of variables you are considering
changing

* But, sometimes you can use dynamic
programming (or other combinatorial algorithms)
to search exponential spaces in polytime

— Consider a sequence labeling problem where you
have a bigram Markov model + some global features

— Example: NER with constraints that say that all
phrases should have the same label across a

document

Stochastic Hill Climbing

* |[n general, there is no neighborhood function
that will give you correct and efficient local
search

— Hill climbing may still be good enough!

e Another variation

— Replace the arg max with a stochastic decision:
pick low-scoring decisions with some probability

Simulated Annealing

View configurations as having an “energy”
FE(x) = log Z — score(x)

Pick change in state by sampling
AFE

X e T

Start with a high temperature (model specific)
Gradually cool down to T=0
Important: keep track of best scoring x so far!

In Pictures

Q

c(x)

In Pictures

QTN

c(x)

Simulated Annealing

* We don’t have to compute the partition
function, just differences in energy

* |[n general:
— Better solutions for slower annealing schedules

— For probabilistic models, T=1 corresponds to Gibbs
sampling (more in a few slides), provided certain
conditions are met on the neighborhood function

Whither Soft Inference?

* As we discussed, hard inference isn’t the only
game in town

* We can use local search to approximate soft
inference as well

— Posterior distributions
— Expected values of functions under distributions

* This brings us to the family of Monte Carlo
techniques

Monte Carlo Approximations

* Monte Carlo techniques let you

— Approximately represent a distribution p(x) [x can
be discrete, continuous, or mixed] using a
collection of N samples from p(x)

— Approximate marginal probabilities of x using
samples from a joint distribution p(x,y)

— Approximate expected values of f(x) using samples
from p(x)

Cases out of 1000000 runs

Monte Carlo approximation of a Gaussian distribution:

40000

0000

20000

10000

S P S L LD e 0 o L D T 3 O P P LR D T 0 T P S LR D [00 O S o L A P 3 T LR P P S L e P

ocoooooooo lplalalale byl byl gl PP PN P [aplaslas Mo laslaslasiaalingl =T ST e S e e LM LN LM LN LN LN L UL

Buckets

Monte Carlo approximation of a ??? distribution:

.
: & .
4 [8 1o 12 14 16

Monte Carlo Questions

* How do we generate samples from the target
distribution?
— Direct (or “perfect”) sampling
— Markov-Chain MC methods (Gibbs, Metropolis-
Hastings)

* How good are the approximations?

Monte Carlo Approximations

“Samples”

Point mass at X(i)

Monte Carlo Expectations

Monte Carlo estimator of [E| f ()

Monte Carlo Expectations

* Nice properties
— Estimator is unbiased
— Estimator is consistent

— Approximation error decreases at a rate of
O(1/N), independent of the dimension of X

* Problems
— We don’t generally know how to sample from p

— When we do, the sampling scheme would be
linear in dim(X)

Direct Sampling from p

 Sampling from p is generally hard

— We may need to compute some very hard
marginal quantities

* Claim. For every Viterbi/Inside-Outside
algorithm there is a sampling algorithm that
you get with the same “start up” cost

— There is a question about this in the HW...

* But we want to use MC approximations when
we can’t run Inside-Outside!

Gibbs Sampling

 Markov chain Monte Carlo (MCMC) method

— Build a Markov model
* The states represent samples from p
* Transitions = Neighborhoods from local search!

* Transition probabilities constructed such that the MM’s
stationary distribution is p

— MCMC samples are correlated

* Burn in Period: Taking every m samples can make
samples more independent.

Gibbs Sampling

* Gibbs sampling relies on the fact that
sampling from p(a|b,c,d,e,f) is easier than
sampling from p(a,b,c,d,e,f)

e Algorithm
— We want N samples from X = {X7,..., X,,}
— The ith sample is x(¥) = {:,cgz), AR

— Start with some x(0)

— For each sample i=1,...,N
* For each vari(ablej=1,...,m
t) i\ . (2)
— Sample gjj ~ p(xj ’ X()\gj])

The Beauty Part: No More Partitions

p(x) = %
e p(x)
p(z; | x\x;) Zx;e% p(X\zj,%)
_ u(x)/Z
Z:I:QEXJ' w(x\z;. x;)/Z
u(x)

Zx; cX,; U(X\CIZ‘]’, LIZ‘;)

Ensuring Detailed Balance

 Option 1: Visit all variables in a deterministic
order that is independent of their current settings

* Option 2: Visit variables uniformly at random,
independently of their current settings

* Option 3: Unfortunately, both of the above may
not be feasible

— Other orders are possible, but you have to prove that
detailed balance is obtained. This can be a pain.

Using Proposal Distributions

* ldea: sample from a distribution that “looks
like” the distribution you want to sample
from, i.e. p(xj ‘ X\xj) or p(x)

— Common trade off: good approximation of p vs.
easy to sample from

 Then perform some kind of correction using p
(or, usually, p*C)
— Metropolis-Hastings: possibly reject sample
— Importance sampling: reweight sample

What Proposal Distribution?

p(x) >0 = ¢q(x)>0

e Specifics depend on your problem

— Sample from a bigram HMM’s posterior distribution as
a proposal for a k-gram HMM

— Sample from a Gaussian as a proposal for some other
continuous density

— Sample from an unconditional distribution as a
proposal for a conditional distribution

* In general: good proposal distributions have
heavier tails

Metropolis Hastings Sampling

* Very simple strategy for incorporating a proposal
distribution

* Can be used to propose full ensemble of
variables, a single variable, or anything in
between

e Standard uses

— Sampling continuous variables (e.g., sample from
Gaussian and accept into non-Gaussian distribution)

— Sample sequence or tree from PCFG/HMM and accept
into model with non-local factors

Metropolis Hastings Sampling

 The MH algorithm works as follows
* For each block of variables you are resampling

—Sample x’' ~ ¢(x' | x)
— Accept this sample with probability

N i 4 PO ax | xT)
Alx = x) = {1’ p(x) Q(X’\X)}

— If accepted, update x
— Otherwise x remains the same

Metropolis Hastings Sampling

* Note: with an unconditional proposal

p(x') q(x) }

p(x) q(x’)

A(x — x') = min {1,

* Also note: you only need to be able to sample
from p and g and evaluate them up to a fixed

factor (e.g., partition)

Metropolis-Hastings

* Pros
— A paper cited 18,000 times can’t be wrong!

— Hand-crafted proposal distributions give you the
ability to improve performance

* Cons
— Keep track of your rejections

— Variance of computed quantities can be
exceedingly high

Importance Sampling

MH samples can be highly correlated -> high
variance of MC estimates of expectations

Importance sampling is a technique for reducing
variance (albeit by increasing bias)

Intuition

— Rather than rejecting bad samples, down-weight them
appropriately

Benefits

— Lower variance

— Biased, but still consistent

— Estimate of Z

Importance Sampling

* Given p(x) = ulx)

Importance Sampling

* Given p(x) = % and importance dist. ¢(x)

where Z = Z u(x) p(x) >0 = ¢(x) >0

Importance Sampling

* Given p(x) = % and importance dist. ¢(x)

where Z = Z u(x) p(x) >0 = ¢(x) >0

 We define the unnormalized weight function
w(x) = 24X
q(x)

Importance Sampling

* Given p(x) = % and importance dist. ¢(x)

where Z = Z u(x) p(x) >0 = ¢(x) >0

 We define the unnormalized weight function

o)
wx) q(x)

e We can now write

Z = wX)q(x)

xeX

Importance Sampling

7= wx)qx)

xcX

Notice that this has the form of an expected value

of w(x) under q:
/ =]Eq(.>w(x)

Importance Sampling

Z=> wx)qx)

xcX

Notice that this has the form of an expected value

of w(x) under q:
=]Eq(.>w(x)

We can replace this with a Monte Carlo estimate

Importance Sampling

| N
7 _ (%)
7 = ;:1 w(x'")

This lets us derive the following approximation:

Importance Sampling

| N
7 _ (%)
7 = ;:1 w(x'")

This lets us derive the following approximation:
N .

ﬁ(X) _ i Z w(X)ZQ(X)

Intuitively, we have reweighted each sample
x{) from q(x) with an importance weight
w(x(i))

>, w(x())

Importance Sampling

IS Expectations are defined straightforwardly as

IAE]ES(.) f(x)] = Z

Importance Sampling

* You can show

— Thatt
— Thatt
— Thatt

ne
ne

ne

S estimator is biased
S estimator is consistent
S estimator obeys a central limit

theorem with asymptotic variance

% > ((xx)) (%) = By S ()]

xXcX

q

— That the IS estimator is more efficient than
rejection sampling

Summary

* Monte Carlo techniques are a huge field of
research

— This is a survey of the important ones that are
used in structured prediction

e We will return to these methods when we talk
about Bayesian unsupervised learning

