Lagrangian Relaxation for MAP Inference

Outline

- An elegant example of a relaxation to TSP
- A common problem in NLP: finding consensus
- Basic Lagrangian relaxation
- Solving the problem with subgradient
- AD³: an alternative approach to decomposition and optimization using the augmented Lagrangian

Traveling Salesman Problem

- Given: a graph (V, E) with edge weight function θ
- Tour: a subset of E corresponding to a path that starts and ends in the same place, and visits every other node exactly once.
- TSP: Find the maximum-scoring tour.
 NP-hard

Another Problem

- 1-tree: a tree on edges for {2, ..., |V|}, plus two edges from E that link the tree to vertex 1.
 - All tours are 1-trees.
 - All 1-trees where every vertex has degree 2 are tours.
 - Easy to solve.

Held and Karp (1971)

LR Algorithm for TSP

- 1. Initialize $u^{(0)} = 0$
- 2. Repeat for k = 1, 2, ...:

If this converges to a solution that satisfies the constraints, it is a solution to the TSP.

Lagrangian Relaxation, More Generally

- Assume a linear scoring function that is "hard" to maximize. $\max \theta^{ op} y$
- Rewrite the problem as something easier, with linear constraints (relaxation): $\max_{\boldsymbol{\mathcal{Y}} \in \boldsymbol{\mathcal{Y}}'} \boldsymbol{\theta}^{\top} \boldsymbol{\mathcal{Y}}$ $\mathcal{Y} = \{ \boldsymbol{y} \in \boldsymbol{\mathcal{Y}}' : \mathbf{A}\boldsymbol{y} = \mathbf{b} \}$ s.t. $\mathbf{A}\boldsymbol{y} = \mathbf{b}$

u $\boldsymbol{u} \in \mathcal{V}'$

 $\min \max \boldsymbol{\theta}^{\top} \boldsymbol{y} + \mathbf{u}^{\top} \left(\mathbf{A} \boldsymbol{y} - \mathbf{b} \right)$

 $\boldsymbol{u} \in \mathcal{Y}$

• Tackle the dual problem:

Theory

- The dual function (of **u**) upper bounds the MAP problem.
- A subgradient algorithm can be applied to minimize the dual; it will converge in the limit.
- If the solution to the dual problem satisfies the constraints, it is also a solution to the primal (relaxed) problem (Υ).
 - If the relaxation is *tight*, we also have a solution to the original primal problem (Υ).

Dual Decomposition (A Special Case of LR)

• Assume the objective decomposes into two parts, coupled only through the linear constraints: $\max_{y \in \mathcal{Y}, z \in \mathcal{Z}} \theta^\top y + \psi^\top z$

s.t. Ay + Cz = b

• The relaxation:

$$\max_{\boldsymbol{y}\in\mathcal{Y},\boldsymbol{z}\in\mathcal{Z}}\boldsymbol{\theta}^{\top}\boldsymbol{y} + \boldsymbol{\psi}^{\top}\boldsymbol{z} \equiv \left(\max_{\boldsymbol{y}\in\mathcal{Y}}\boldsymbol{\theta}^{\top}\boldsymbol{y}, \max_{\boldsymbol{z}\in\mathcal{Z}}\boldsymbol{\psi}^{\top}\boldsymbol{z}\right)$$

Dual Decomposition

 $\min_{\mathbf{u}} \max_{\boldsymbol{y} \in \mathcal{Y}, \boldsymbol{z} \in \mathcal{Z}} \boldsymbol{\theta}^{\top} \boldsymbol{y} + \boldsymbol{\psi}^{\top} \boldsymbol{z} + \mathbf{u}^{\top} \left(\mathbf{A} \boldsymbol{y} + \mathbf{C} \boldsymbol{z} - \mathbf{b} \right)$

- 1. Initialize $u^{(0)} = 0$
- 2. Repeat for k = 1, 2, ...:

$$egin{aligned} &oldsymbol{y}^{(k)} \leftarrow \max_{oldsymbol{y} \in \mathcal{Y}} oldsymbol{ heta}^ op oldsymbol{y} + \mathbf{u}^{(k-1) op} \mathbf{A}oldsymbol{y} \ &oldsymbol{z}^{(k)} \leftarrow \max_{oldsymbol{z} \in \mathcal{Z}} oldsymbol{\psi}^ op oldsymbol{z} + \mathbf{u}^{(k-1) op} \mathbf{C}oldsymbol{z} \ &\mathbf{u}^{(k)} \leftarrow \mathbf{u}^{(k-1)} - \delta_k \left(\mathbf{A}oldsymbol{y}^{(k)} + \mathbf{C}oldsymbol{z}^{(k)} - \mathbf{b}
ight) \end{aligned}$$

Consensus Problems in NLP

- Key example:
 - Find the jointly-best parse (under a WCFG) and sequence labeling (under an HMM); see Rush et al. (2010)
- Other examples:
 - Finding a lexicalized phrase structure parse that is jointly-best under a WCFG and a dependency model (Rush et al., 2010)
 - Decoding in phrase-based translation (Chang and Collins, 2011).

Example Run (k = 1)

$$\forall i \in \{1, \ldots, n\}, \forall N \in \mathcal{N}, \boldsymbol{y}[N, i, i] = \boldsymbol{z}[N, i]$$

$$\mathbf{u}[N,i]^{(1)} = \mathbf{u}[N,i]^{(0)} - \delta_k \left(\boldsymbol{y}[N,i,i]^{(1)} - \boldsymbol{z}[N,i]^{(1)} \right)$$

u[A, 1] = -1 u[N, 2] = -1 u[V, 5] = -1 u[N, 1] = 1 u[V, 2] = 1u[N, 5] = 1

Example Run (k = 2)

Example Run (k = 3)

"Certificate"

Proof that we have solved the original problem: constraints hold.

– This is easy to check given **y** and **z**.

• In published NLP papers so far, this happens most of the time (better than 98%).

What can go wrong?

- It can take many iterations to converge.
- Oscillation between different solutions; failure to agree.
 - Suggested solution: add more variables for "bigger parts" and enforce agreement among them with more constraints.

What does this have to do with ILP?

 The linear constraints are expressed in terms of an integer-vector representation of the output space.

– Just like when we treated decoding as an ILP.

 The subproblems *could* be expressed as ILPs, though we'd prefer to use poly-time combinatorial algorithms to solve them if we can.

Consensus Problems, Revisited

• What if we just have a hard combinatorial optimization problem?

There isn't always a straightforward decomposition.

- Martins et al. (2011): shatter a decoding problem into many "small" subproblems (instead of two "big" ones).
 - Instead of dynamic programming as a subroutine, LP relaxations of "small" subproblems.
 - Extra LP relaxation step.

Martins' Alternative Formulation

• Original problem: $y_1 \in y_2$

$$\max_{\boldsymbol{y}_1 \in \mathcal{Y}_1, \dots, \boldsymbol{y}_S \in \mathcal{Y}_S, \boldsymbol{w} \in \mathbb{R}^D} \sum_{s=1}^{} \boldsymbol{\theta}_s^\top \boldsymbol{y}_s$$

S

s.t. $\forall s, \mathbf{A}_s \boldsymbol{w} = \boldsymbol{y}_s$

S

Convex relaxation:

$$\max_{\boldsymbol{y}_1 \in \text{conv}(\mathcal{Y}_1), \dots, \boldsymbol{y}_S \in \text{conv}(\mathcal{Y}_S), \boldsymbol{w} \in \mathbb{R}^D} \sum_{s=1}^{\mathbb{S}} \boldsymbol{\theta}_s^\top \boldsymbol{y}_s$$

s.t. $\forall s, \mathbf{A}_s \boldsymbol{w} = \boldsymbol{y}_s$

• Dual:

 $\min_{\mathbf{u}_1,...,\mathbf{u}_S} \max_{\boldsymbol{y}_1 \in \operatorname{conv}(\mathcal{Y}_1),...,\boldsymbol{y}_S \in \operatorname{conv}(\mathcal{Y}_S), \boldsymbol{w} \in \mathbb{R}^D} \sum_{s=1}^S \boldsymbol{\theta}_s^\top \boldsymbol{y}_s + \sum_s \mathbf{u}_s^\top \left(\boldsymbol{y}_s - \mathbf{A}_s \boldsymbol{w} \right)$

Augmented Lagrangian (Hestenes, 1969; Powell, 1969)

Alternating Directions Method of Multipliers (Gabay and Mercier, 1976; Glowinski and Marroco, 1975) Dual Decomposition (AD³)

• Alternate between updating **y** and **w**:

$$\forall s, \boldsymbol{y}_{s} \leftarrow \arg \max_{\boldsymbol{y}_{s} \in \operatorname{conv}(\boldsymbol{\mathcal{Y}}_{s})} \boldsymbol{\theta}_{s}^{\top} \boldsymbol{y}_{s} + \mathbf{u}_{s}^{\top} \boldsymbol{y}_{s} + \frac{\rho}{2} \|\boldsymbol{y}_{s} - \mathbf{A}_{s} \boldsymbol{w}\|_{2}^{2}$$
$$\boldsymbol{w} \leftarrow \arg \max_{\boldsymbol{w}} \sum_{s} \mathbf{u}_{s}^{\top} \mathbf{A}_{s} \boldsymbol{w} + \frac{\rho}{2} \sum_{s} \|\boldsymbol{y}_{s} - \mathbf{A}_{s} \boldsymbol{w}\|_{2}^{2}$$

• Subgradient step for dual variables **u** is similar to before: $\forall s, \mathbf{u}_s^{(k)} \leftarrow \mathbf{u}_s^{(k-1)} - \delta_k (\boldsymbol{y}_s - \mathbf{A}_s \boldsymbol{w})$

Massive Decomposition

• Most extreme: every factor (MN) or "part" is a separate subproblem.

$$\forall s, \boldsymbol{y}_s \leftarrow \arg \max_{\boldsymbol{y}_s \in \operatorname{conv}(\mathcal{Y}_s)} \boldsymbol{\theta}_s^\top \boldsymbol{y}_s + \mathbf{u}_s^\top \boldsymbol{y}_s + \frac{\rho}{2} \|\boldsymbol{y}_s - \mathbf{A}_s \boldsymbol{w}\|_2^2$$

 Some kinds of MN factors can be solved very efficiently ...

XOR, OR, OR-with-Output Solvable in O(K log K)

AD³ and "Big" Subproblems?

- Return to Rush and Collins' example.
 - One subproblem is "WCFG" and one is "HMM tagger."

$$\forall s, \boldsymbol{y}_s \leftarrow \arg \max_{\boldsymbol{y}_s \in \operatorname{conv}(\boldsymbol{\mathcal{Y}}_s)} \boldsymbol{\theta}_s^\top \boldsymbol{y}_s + \mathbf{u}_s^\top \boldsymbol{y}_s + \frac{\rho}{2} \|\boldsymbol{y}_s - \mathbf{A}_s \boldsymbol{w}\|_2^2$$

- In dependency parsing, "max arborescence" might be a subproblem.
- Why can't we use AD^3 ?

Pros and Cons

- Con: Subproblems are now quadratic.
 - Linear decoders as subroutines?
- Con: Fractional solutions.
- Pro: Better stopping criteria: residuals.
 - Primal residuals measure amount by which primal constraints are violated.
 - Dual residuals measure amount by which dual optimality is violated.
- Pro: Certificates as before (for each s, A_sw = y_s)

Convergence of AD³ vs. Subgradient

Dependency parsing:

- ADMM = AD^3
- Sec Ord = Second order model for which subgradient optimization is possible
- Full = second order model with all-siblings, directed paths, and non-projective arcs

Take-Home Messages

- Dual decomposition is useful for consensus problems.
 - Subgradient DD when there are a few subproblems with good specialized solvers.
 - AD³ when you've got a big problem with lots of hard and soft constraints. (There is a library.)
- Attractive guarantees (cf. beam search).
- Only MAP inference.

References

- "A tutorial on dual decomposition and Lagrangian relaxation for inference in natural language processing," by A. Rush and M. Collins, JAIR 45:305-362, 2013.
- "Alternating directions dual decomposition" by A. Martins et al., arXiv 1212.6550.