Lagrangian Relaxation
for MAP Inference



Outline

An elegant example of a relaxation to TSP

A common problem in NLP: finding consensus
Basic Lagrangian relaxation

Solving the problem with subgradient

AD3: an alternative approach to
decomposition and optimization using the
augmented Lagrangian



Traveling Salesman Problem

* Given: agraph (V, E) with edge weight
function 6
* Tour: a subset of E corresponding to a path

that starts and ends in the same place, and
visits every other node exactly once.

 TSP: Find the maximum-scoring tour.

— NP-hard
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Another Problem

* 1-tree: atree on edges for {2, ..., |V|}, plus
two edges from E that link the tree to vertex 1.
— All tours are 1-trees.

— All 1-trees where every vertex has degree 2 are
tours.

— Easy to solve.



Held and Karp (1971)
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LR Algorithm for TSP

1. Initialize u® =0
2. Repeatfork=1,2, ...
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If this converges to a solution that satisfies the
constraints, it is a solution to the TSP.



Lagrangian Relaxation, More Generally

 Assume a linear scoring function that is “hard”

to maximize.
max 0 'y

yey

* Rewrite the problem as something easier, with

linear constraints (relaxation): max HTy
y={ye):Ay=b} ye)
s.t. Ay=D>

* Tackle the dual problem:

minmax0'y+u' (Ay — b)
u yc)y’



Theory

* The dual function (of u) upper bounds the
MAP problem.

* A subgradient algorithm can be applied to
minimize the dual; it will converge in the limit.

* |f the solution to the dual problem satisfies
the constraints, it is also a solution to the
primal (relaxed) problem (Y7).

— If the relaxation is tight, we also have a solution to
the original primal problem (Y).



Dual Decomposition
(A Special Case of LR)

* Assume the objective
decomposes into two parts,

coupled only through the
linear constraints:

max 0 z
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s.t. Ay+Cz =D
* The relaxation:
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Dual Decomposition

min max 0 y+v¢ z+u' (Ay+ Cz —Db)
u yecl,zez

1. Initialize u® =0
2. Repeatfork=1,2,....
y(k) {— max HTy 4 u(k_l)TAy
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Consensus Problems in NLP

* Key example:

— Find the jointly-best parse (under a WCFG) and
sequence labeling (under an HMM); see Rush et
al. (2010)

* Other examples:

— Finding a lexicalized phrase structure parse that is
jointly-best under a WCFG and a dependency
model (Rush et al., 2010)

— Decoding in phrase-based translation (Chang and
Collins, 2011).



Example Run (k = 1)
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Example Run (k = 2)
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Example Run (k = 3)
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“Certificate”

* Proof that we have solved the original
problem: constraints hold.

— This is easy to check given y and z.

* |n published NLP papers so far, this happens
most of the time (better than 98%).



What can go wrong?

* |t can take many iterations to converge.

e Oscillation between different solutions; failure
to agree.
— Suggested solution: add more variables for

“bigger parts” and enforce agreement among
them with more constraints.



What does this have to do with ILP?

* The linear constraints are expressed in terms
of an integer-vector representation of the
output space.

— Just like when we treated decoding as an ILP.

* The subproblems could be expressed as ILPs,
though we’d prefer to use poly-time

combinatorial algorithms to solve them if we
can.



Consensus Problems, Revisited

 What if we just have a hard combinatorial
optimization problem?
— There isn’t always a straightforward decomposition.

 Martins et al. (2011): shatter a decoding problem
into many “small” subproblems (instead of two
“big” ones).
— Instead of dynamic programming as a subroutine, LP
relaxations of “small” subproblems.

— Extra LP relaxation step.



Martins’ Alternative Formulation
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Augmented Lagrangian
(Hestenes, 1969; Powell, 1969)
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Alternating Directions Method of Multipliers
(Gabay and Mercier, 1976; Glowinski and Marroco, 1975)

Dual Decomposition (AD3)

* Alternate between updating y and w:

Vs,y, < arg max 0]y, +uly, + |y, — Aaw]|?
y Econv(Ys) 2

w argmszuzAsw T g Z lys — Astg

* Subgradient step for dual variables u is similar

to before: Vs, ul®) « ulb=1 — 5, (y. — Aw)



Massive Decomposition

 Most extreme: every factor (MN) or “part” is
a separate subproblem.

Vs,y, < arg max 0]y, +uly, + |y, — Aaw]|?
y Econv(Ys) 2

* Some kinds of MN factors can be solved very
efficiently ...



XOR, OR, OR-with-Output
Solvable in O(K log K)
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AD? and “Big” Subproblems?

* Return to Rush and Collins” example.

— One subproblem is “WCFG” and one is “HMM
tagger.”

Vs,y, < arg max 0]y, +uly, + |y, — Aaw]|?
y Econv(Ys) 2

— In dependency parsing, “max arborescence” might
be a subproblem.

— Why can’t we use AD3?



Pros and Cons

Con: Subproblems are now quadratic.

— Linear decoders as subroutines?

Con: Fractional solutions.

Pro: Better stopping criteria: residuals.

— Primal residuals measure amount by which primal
constraints are violated.

— Dual residuals measure amount by which dual
optimality is violated.

Pro: Certificates as before (for eachs, Aw =y,)



Convergence of AD3 vs. Subgradient

Stopping Criteria
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Dependency parsing:

« ADMM = AD3

e Sec Ord = Second order model for which subgradient optimization is possible

* Full = second order model with all-siblings, directed paths, and non-projective arcs



Take-Home Messages

* Dual decomposition is useful for consensus
problems.

— Subgradient DD when there are a few
subproblems with good specialized solvers.

— AD3 when you’ve got a big problem with lots of
hard and soft constraints. (There is a library.)

e Attractive guarantees (cf. beam search).

 Only MAP inference.
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