
Lagrangian Relaxation	
for	MAP	Inference



Outline

• An	elegant	example	of	a	relaxation	to	TSP
• A	common	problem	in	NLP:		finding	consensus
• Basic	Lagrangian relaxation
• Solving	the	problem	with	subgradient
• AD3:		an	alternative	approach	to	
decomposition	and	optimization	using	the	
augmented	Lagrangian



Traveling	Salesman	Problem

• Given:		a	graph	(V,	E)	with	edge	weight	
function	θ

• Tour:		a	subset	of	E	corresponding	to	a	path	
that	starts	and	ends	in	the	same	place,	and	
visits	every	other	node	exactly	once.

• TSP:		Find	the	maximum-scoring	tour.
– NP-hard

max
y2Ytour
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Another	Problem

• 1-tree:		a	tree	on	edges	for	{2,	...,	|V|},	plus	
two	edges	from	E	that	link	the	tree	to	vertex	1.
– All	tours	are	1-trees.
– All	1-trees	where	every	vertex	has	degree	2	are	
tours.

– Easy	to	solve.



Held	and	Karp	(1971)

Ytour =
(
y : y 2 Y1-tree ^ 8i 2 {1, . . . , |V |},

X

e:i2e

ye = 2

)

max
y2Ytour

X

e2E

ye✓e

Lagrangian dual

transforming	the	constraints
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LR	Algorithm	for	TSP

1. Initialize	u(0) =	0
2. Repeat	for	k	=	1,	2,	...:

If	this	converges	to	a	solution	that	satisfies	the	
constraints,	it	is	a	solution	to	the	TSP.
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Lagrangian Relaxation,	More	Generally

• Assume	a	linear	scoring	function	that	is	“hard”	
to	maximize.

• Rewrite	the	problem	as	something	easier,	with	
linear	constraints	(relaxation):

• Tackle	the	dual	problem:

max
y2Y

✓>y

max
y2Y0

✓>y

s.t. Ay = b
Y = {y 2 Y 0 : Ay = b}

min
u

max
y2Y0

✓>y + u> (Ay � b)



Theory

• The	dual	function	(of	u)	upper	bounds	the	
MAP	problem.

• A	subgradient algorithm	can	be	applied	to	
minimize	the	dual;	it	will	converge	in	the	limit.

• If	the	solution	to	the	dual	problem	satisfies	
the	constraints,	it	is	also	a	solution	to	the	
primal	(relaxed)	problem	(Y’).
– If	the	relaxation	is	tight,	we	also	have	a	solution	to	
the	original	primal	problem	(Y).



Dual	Decomposition	
(A	Special	Case	of	LR)

• Assume	the	objective	
decomposes	into	two	parts,	
coupled	only	through	the	
linear	constraints:

• The	relaxation:

max
y2Y,z2Z

✓>y + >z

s.t. Ay +Cz = b

max
y2Y,z2Z

✓>y + >z ⌘
✓
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✓>y,max
z2Z
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Dual	Decomposition

min
u

max
y2Y,z2Z

✓>y + >z + u> (Ay +Cz � b)

1. Initialize	u(0) =	0
2. Repeat	for	k	=	1,	2,	...:

y(k)  max
y2Y

✓>y + u(k�1)>Ay

z(k)  max
z2Z

 >z + u(k�1)>Cz

u(k)  u(k�1) � �k
⇣
Ay(k) +Cz(k) � b

⌘



Consensus	Problems	in	NLP

• Key	example:
– Find	the	jointly-best	parse	(under	a	WCFG)	and	
sequence	labeling	(under	an	HMM);	see	Rush	et	
al.	(2010)

• Other	examples:
– Finding	a	lexicalized	phrase	structure	parse	that	is	
jointly-best	under	a	WCFG	and	a	dependency	
model	(Rush	et	al.,	2010)

– Decoding	in	phrase-based	translation	(Chang	and	
Collins,	2011).



Example	Run	(k	=	1)

8i 2 {1, . . . , n}, 8N 2 N ,y[N, i, i] = z[N, i]

u[A, 1] = �1

u[N, 2] = �1

u[V, 5] = �1

u[N, 1] = 1

u[V, 2] = 1

u[N, 5] = 1

u[N, i](1) = u[N, i](0) � �k
⇣
y[N, i, i](1) � z[N, i](1)

⌘



Example	Run	(k	=	2)

8i 2 {1, . . . , n}, 8N 2 N ,y[N, i, i] = z[N, i]

u[N, i](2) = u[N, i](1) � �k
⇣
y[N, i, i](2) � z[N, i](2)

⌘
# u[N, 1]

# u[V, 1]

" u[A, 1]

" u[N, 1]



Example	Run	(k	=	3)

8i 2 {1, . . . , n}, 8N 2 N ,y[N, i, i] = z[N, i]



“Certificate”

• Proof	that	we	have	solved	the	original	
problem:		constraints	hold.
– This	is	easy	to	check	given	y and	z.

• In	published	NLP	papers	so	far,	this	happens	
most	of	the	time	(better	than	98%).



What	can	go	wrong?

• It	can	take	many	iterations	to	converge.
• Oscillation	between	different	solutions;	failure	
to	agree.
– Suggested	solution:		add	more	variables	for	
“bigger	parts”	and	enforce	agreement	among	
them	with	more	constraints.



What	does	this	have	to	do	with	ILP?

• The	linear	constraints	are	expressed	in	terms	
of	an	integer-vector	representation	of	the	
output	space.
– Just	like	when	we	treated	decoding	as	an	ILP.

• The	subproblems could be	expressed	as	ILPs,	
though	we’d	prefer	to	use	poly-time	
combinatorial	algorithms	to	solve	them	if	we	
can.



Consensus	Problems,	Revisited

• What	if	we	just	have	a	hard	combinatorial	
optimization	problem?
– There	isn’t	always	a	straightforward	decomposition.

• Martins	et	al.	(2011):		shatter	a	decoding	problem	
into	many “small”	subproblems (instead	of	two	
“big”	ones).
– Instead	of	dynamic	programming	as	a	subroutine,	LP	
relaxations	of	“small”	subproblems.

– Extra	LP	relaxation	step.



Martins’	Alternative	Formulation

• Original	problem:

• Convex	relaxation:

• Dual:

max
y12Y1,...,yS2YS ,w2RD
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Augmented	Lagrangian
(Hestenes,	1969;	Powell,	1969)

min
u1,...,uS
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Alternating	Directions	Method	of	Multipliers	
(Gabay and	Mercier,	1976;	Glowinski and	Marroco,	1975)

Dual	Decomposition	(AD3)

• Alternate	between	updating	y and	w:

• Subgradient step	for	dual	variables	u is	similar	
to	before:

8s,ys  arg max
ys2conv(Ys)

✓>
s ys + u>

s ys +
⇢

2
kys �Aswk22

w  argmax
w

X

s
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⇢

2

X

s
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8s,u(k)
s  u(k�1)

s � �k (ys �Asw)



Massive	Decomposition

8s,ys  arg max
ys2conv(Ys)

✓>
s ys + u>

s ys +
⇢

2
kys �Aswk22
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s
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2

X

s
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• Most	extreme:		every	factor	(MN)	or	“part”	is	
a	separate	subproblem.

• Some	kinds	of	MN	factors	can	be	solved	very	
efficiently	...



XOR,	OR,	OR-with-Output	
Solvable	in	O(K	log	K)



8s,ys  arg max
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AD3 and	“Big”	Subproblems?

• Return	to	Rush	and	Collins’	example.
– One	subproblem is	“WCFG”	and	one	is	“HMM	
tagger.”

– In	dependency	parsing,	“max	arborescence”	might	
be	a	subproblem.

–Why	can’t	we	use	AD3?



Pros	and	Cons

• Con:		Subproblems are	now	quadratic.
– Linear	decoders	as	subroutines?

• Con:		Fractional	solutions.
• Pro:		Better	stopping	criteria:		residuals.
– Primal	residuals	measure	amount	by	which	primal	
constraints	are	violated.

– Dual	residuals	measure	amount	by	which	dual	
optimality	is	violated.

• Pro:		Certificates	as	before	(for	each	s,	Asw =	ys)



Convergence	of	AD3 vs.	Subgradient

Dependency	parsing:
• ADMM	=	AD3

• Sec	Ord =	Second	order	model	for	which	subgradient optimization	is	possible
• Full	=	second	order	model	with	all-siblings,	directed	paths,	and	non-projective	arcs



Take-Home	Messages

• Dual	decomposition	is	useful	for	consensus	
problems.
– Subgradient DD	when	there	are	a	few	
subproblems with	good	specialized	solvers.

– AD3 when	you’ve	got	a	big	problem	with	lots	of	
hard	and	soft	constraints.		(There	is	a	library.)

• Attractive	guarantees	(cf.	beam	search).
• Only	MAP	inference.
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