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Conditional	Models
T = (hx1,y1i, hx2,y2i, . . . , hxn,yni)

Last	time,	we	worked	with	generative	(joint)	models
that	sought	to	maximize	the	following	objective:

Today,	we	will	work	with	conditional	models	with
the	following	conditional	objective

p(T ) =
Y

hx,yi2T

p(y | x;w)p̃(x)

p(T ) =
Y

hx,yi2T

p(x,y;w)



Why	Conditional	Models?

• Conditional	models	have	the	following	
property:

• Intuitively,	we	don’t	“waste”	effort	modeling	
the	marginal	distribution	of	x

8x 2 X ,
X

y2Yx

p(y | x;w) = 1



ERM	for	Conditional	Models

• Recall	the	cost	function	for	joint	models

• For	conditional	models,	it	becomes

• What’s	the	difference?	Intuition?

cost(x,y, h) = � log p(X = x,Y = y)

cost(x,y, h) = � log p(Y = y | X = x)



Maximum	Entropy	Markov	Models

• Recall	HMMs

• Consider	this	alternative	structure:
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MEMMs

• You	can	go	even	further:

• Limitation:	you	cannot	condition	on	the	
future,	the	probability	p(y |	x)	still	factors	into	
conditionally	independent	steps
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MEMM	Structure

• MEMMs	parameterize	each	local	classification	
decision	with	a	“conditional	maximum	
entropy	model”	– more	commonly	known	as	a	
multiclass	logistic	regression	classifier

p(y | x;w) =

|x|Y

i=1

p(yi | x, i, yi�1;w)

p(yi | x, i, yi�1;w) =
expw>f(yi,x, i, yi�1)P

y02⇤ expw>f(y0,x, i, yi�1)



Learning	MEMM	Params
• The	training	objective	is	the	conditional	
likelihood	of	all	of	the	local	classification	
decisions

@L
@wj

=
X

hx,yi2T

|x|X

i=1

h
fj(yi,x, i, yi�1)�

Ep(y0|x,i,yi�1;w)fj(y
0,x, i, yi�1)

i

L =
X

hx,yi2T

|x|X

i=1

w>f(yi,x, i, yi�1)� logZ(x, i, yi�1;w)



Task:	Information	Extraction



Task:	Information	Extraction



Some	Features



Empirically…

Learner Agr. Prob. SegPrecision SegRecall

TokenHMM 0.865 0.276 0.140

FeatureHMM 0.941 0.413 0.529

MEMM 0.965 0.867 0.681

Task:	



Conditional	Random	Fields

• Problems	with	MEMMs
–What	if	we	want	to	define	a	conditional	
distribution	over	trees?	Or	graphs?	Or…?

– Label	bias
–What	if	we	want	to	define	features	like

y_{-1}	=	DT	&	y_{+1}	=	VB



The	Label	Bias	Problem

Here	is	a	6-state	MEMM.	There	are	two	possible
labelings of	‘r	i b’	that	have	the	following	two
probabilities.
p(0, 1, 2, 3 | r i b) =p(0)⇥

p(1 | r, 0)⇥
p(2 | i, 1)⇥
p(3 | b, 2)

p(0, 4, 5, 3 | r i b) =p(0)⇥
p(4 | r, 0)⇥
p(5 | i, 4)⇥
p(3 | b, 5)

What’s	the	problem	here?



Solving	Label	Bias

• Intuitively,	we	would	like	each	feature	to	
contribute	globally	to	the	probability
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Globally	Normalized	Models

p(y | x;w) =
expw>g(x,y)P

y02Yx
expw>g(x,y0)

Z(x;w) =
X

y02Yx

expw>g(x,y0)



Conditional	Random	Fields

• CRFs	(Lafferty	et	al.,	2001)	are	a	special	form	
of	globally	normalized	models
– They	solve	the	label	bias	problem
– They	can	be	applied	to	arbitrary	structures
– They	can	use	arbitrary	features*
– They	generalize	the	notion	of	the	logistic	
regression	to	cases	where	the	output	spaces	has	
structure



CRFs	for	Sequence	Labels
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p(y | x;w) =
exp

P|x|
i=1 w

>f(yi,x, i, yi�1)
P

y02⇤|x| exp
P|x|

i=1 w
>f(y0i,x, i, y

0
i�1)



Comparison	to	MEMMs
• CRF

• MEMM

p(y | x;w) =
exp

P|x|
i=1 w

>f(yi,x, i, yi�1)
P

y02⇤|x| exp
P|x|

i=1 w
>f(y0i,x, i, y

0
i�1)

p(y | x;w) =

|x|Y

i=1

p(yi | x, i, yi�1;w)

p(yi | x, i, yi�1;w) =
expw>f(yi,x, i, yi�1)P

y02⇤ expw>f(y0,x, i, yi�1)



CRFs:	Sum	of	their	Parts

• A	CRF	is	a	globally	normalized	model	in	which	
g decomposes	into	local	parts	of	the	output
structure

⇧i(x,y) = hyi,x, i, yi�1i

g(x,y) =

#parts(x)X

k=1

f(⇧k(x,y))



Sequential	Parts
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Sequential	Parts
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Sequential	Parts

DT JJ NN VBD

an angry cat hissed

⇧1 ⇧2 ⇧3



Training	CRFs

• Maximum	likelihood	estimation	is	
straightforward,	conceptually

p(y | x;w) =
exp

P|x|
i=1 w

>f(yi,x, i, yi�1)
P

y02⇤|x| exp
P|x|

i=1 w
>f(y0i,x, i, y

0
i�1)

@L
@wj

=

#parts(y)X

i=1

h
f(⇧i(x,y))�

Ep(y0|x;w)f(⇧i(x,y
0))

i



Efficient	Inference

• If	the	parts	factor	into	a	sequence	or	a	tree,	
then	you	can	use	polytime DP	algorithms	to
– Solve	for	the	MAP	setting	of	Y
– Compute	the	partition	function
– Compute	posterior	distributions	over	the	settings	
of	the	variables	in	the	parts



Forward	Chart

a b

i=1 i=2

· · ·

· · ·

· · ·
↵2(S2 | x)

↵t(s | x) =
X

r!s

↵t�1(r) expw
>f(r, s, t,x)



A	Word	About	Features

• Less	“local”	features	require	bigger	part	functions
– This	has	a	direct	impact	on	the	runtime	of	inference	
algorithms

– But,	in	conditional	models,	you	get	to	see	the	whole	
source	“for	free”

• Features	are	generally	constructed	by	domain	
experts
– They	often	have	the	form	of	templates	%yi_suf(%xi)

• Feature	learning	or	induction	is	becoming	
increasingly	important
– Conjunctions	of	basis	features
– Vector	space	(“distributed”)	representations



Pseudolikelihood

• How	to	train	intractable	models?
– Approximate	inference	(Gibbs	sampling,	
Importance	Sampling,	etc.)

– Approximate	models

p(y | x) ⇡
mY

k=1

p(yk | x,y\yk)

=
mY

k=1

exp
P

j:yk2⇧j(x,y)
w>f(⇧j(x,y))

Z(x,y\yk;w)



Pseudolikelihood

DT JJ NN VBD

an angry cat hissed

p(y1 | x,y\y1)



Pseudolikelihood
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p(y1 | x,y\y1)⇥p(y2 | x,y\y2)



Pseudolikelihood

• Details
– PL	is	due	to	Besag (1975)	who	was	estimating	
models	of	agricultural	output

– Consistent	estimator
– Like	Gibbs	sampling,	local	search,	…	you	can	use	
larger	groups	of	variables	to	estimate	the	PL



Preventing	Overfitting

• Maximum	likelihood	estimation	leads	to	
overfitting
– You	typically	want	to	regularize

L = �R(w) +
X

(x,y)2T

log p(y | x;w)

R(w) =
X

j

w2
j R(w) =

X

j

|wj |


