Conditional Models



Outline

* Conditional Models
e Maximum Entropy Markov Models (MEMMs)

e Conditional Random Fields
— Pseudolikelihood training



Conditional Models

T = ((X1,¥1), (X2,¥2), - -+, (Xn, ¥))

Last time, we worked with generative (joint) models
that sought to maximize the following objective:
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Today, we will work with conditional models with
the foIIowing conditional objective
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Why Conditional Models?

* Conditional models have the following
property:

vxeX, » ply|xw)=1
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* |ntuitively, we don’t “waste” effort modeling
the marginal distribution of x



ERM for Conditional Models

e Recall the cost function for joint models

cost(X,y,h) = —logp(X =x,Y =y)

 For conditional models, it becomes

cost(x,y,h) = —logp(Y =y | X = x)

e What's the difference? Intuition?



Maximum Entropy Markov Models

e Recall HMMs




Maximum Entropy Markov Models

e Recall HMMs
(e (1) ——(w)——e—(@)
ONECENCOENC.

 Consider this alternative structure:
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MEMMs

* You can go even further:

* Limitation: you cannot condition on the
future, the probability p(y | x) still factors into
conditionally independent steps



MEMM Structure

* MEMMs parameterize each local classification
decision with a “conditional maximum
entropy model” — more commonly known as a

multiclass logistic regression classifier

p(y | X, 1 Yi ’LU) — eXprf(yiaxaiayi—l)
) y Uy Y1—1 Zy’EA eXprf(y’,X,i,yi_l)
x|

ply | x;w) = | [ p(yi | x4, yim1; w)
1=1




Learning MEMM Params

* The training objective is the conditional
likelihood of all of the local classification
decisions
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Task: Information Extraction

X-NNTP-Poster: NewsHound v1.33

Archive-name: acorn/fag/part2
Frequency: monthly

2.6) What configuration of serial cable should I use

Here follows a diagram of the necessary connectiocns
programs to work properly. They are as far as I know t
agreed upon by commercial comms software developers fo

Pins 1, 4, and 8 must be connected together inside
is to avoid the well known serial port chip bugs. The



Task: Information Extraction

<head>X-NNTP-Poster: NewsHound v1.33

<head>

<head>Archive-name: acorn/faqg/part2

<head>Frequency: monthly

<head>

<gquestion>2.6) What configuration of serial cable should I use

<answer>
<answer> Here follows a diagram of the necessary connections
<answer>programs toc work properly. They are as far as I know t
<answer>agreed upon by commercial comms software developers fo
<answer>
<answer> Pins 1, 4, and 8 must be connected together inside
<answer>is to avoid the well known serial port chip bugs. The



Some Features

begins-with-number
begins-with-ordinal
begins-with-punctuation
begins-with-question-word
begins-with-subject

blank

contains-alphanum
contains-bracketed-number
contains-http
contains-non-space
contains-number
contains-pipe

contains-question-mark
contains-question-word
ends-with-question-mark
first-alpha-is-capitalized
indented

indented-1-to-4
indented-5-to-10
more-than-one-third-space
only-punctuation
prev-is-blank
prev-begins-with-ordinal
shorter-than-30



Empirically...

Task:

TokenHMM 0.865 0.276 0.140
FeatureHMM 0.941 0.413 0.529
MEMM 0.965 0.867 0.681



Conditional Random Fields

* Problems with MEMMs

— What if we want to define a conditional
distribution over trees? Or graphs? Or...?

— Label bias

— What if we want to define features like
v {-1}=DT &y {+1}=VB



The Label Bias Problem

Here is a 6-state MEMM. There are two possible
labelings of ‘ri b’ that have the following two
probabilities.

p(0,1,2,3 | rib)=p(0)x p(0,4,5,3 | rib)=p(0)x
p(1]r,0)x p(4]r,0)x
p(2]i,1)x p(d | i,4)x
p(3|b,2) p(3 | b,5)

What'’s the problem here?



Solving Label Bias

* |ntuitively, we would like each feature to
contribute globally to the probability
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Solving Label Bias

* |ntuitively, we would like each feature to
contribute globally to the probability
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Globally Normalized Models

expw ' g(X,y)

p(:}f|X;’w)=Z

v’ ey, €XP w'g(x,y’)
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Conditional Random Fields

* CRFs (Lafferty et al., 2001) are a special form
of globally normalized models
— They solve the label bias problem
— They can be applied to arbitrary structures
— They can use arbitrary features*

— They generalize the notion of the logistic
regression to cases where the output spaces has
structure



CRFs for Sequence Labels
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Comparison to MEMMs

* CRF
. — expz 1wa(?/uXa7uyz 1)
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CRFs: Sum of their Parts

* A CRFis aglobally normalized model in which
g decomposes into local parts of the output
structure

Hi (X, y> — <y7,7 X, i? yi—1>

#parts(x)
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Sequential Parts




Sequential Parts

114




Sequential Parts
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Training CRFs

* Maximum likelihood estimation is
straightforward, conceptually
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Efficient Inference

* |f the parts factor into a sequence or a tree,
then you can use polytime DP algorithms to
— Solve for the MAP setting of Y
— Compute the partition function

— Compute posterior distributions over the settings
of the variables in the parts



Forward Chart




A Word About Features

Less “local” features require bigger part functions

— This has a direct impact on the runtime of inference
algorithms

— But, in conditional models, you get to see the whole
source “for free”

Features are generally constructed by domain
experts

— They often have the form of templates %yi_suf(%xi)
Feature learning or induction is becoming
increasingly important

— Conjunctions of basis features

— Vector space (“distributed”) representations



Pseudolikelihood

e How to train intractable models?

— Approximate inference (Gibbs sampling,
Importance Sampling, etc.)

— Approximate models

p(y | x) = || plur | <, 5\uk)
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Pseudolikelihood
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Pseudolikelihood

p(y1 | X, y\y1)Xp(y2 | X, ¥\y2)



Pseudolikelihood

e Details

— PL is due to Besag (1975) who was estimating
models of agricultural output

— Consistent estimator

— Like Gibbs sampling, local search, ... you can use
larger groups of variables to estimate the PL



Preventing Overfitting

e Maximum likelihood estimation leads to
overfitting

— You typically want to regularize

L=AR(w)+ Y logp(y|x;w)
(x,y)eT
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