
Empirical	Risk	Minimization

Outline

• Empirical	risk	minimization	view
– Perceptron
– CRF

Warning:		Math	Ahead

Notation	for	Linear	Models

• Training	data:		{(x1,	y1),	(x2,	y2),	…,	(xN,	yN)}
• Testing	data:		{(xN+1,	yN+1),	…	(xN+N',	yN+N')}
• Feature	function:		g
• Weights:		w
• Decoding:

• Learning:

• Evaluation:
learn

�
{(xi,yi)}N

i=1

⇥
= arg max

w
�

�
w, {(xi,yi)}N

i=1

⇥

decode(w,x) = arg max
y

w�g(x,y)

1
N �

N �⇤

i=1

cost
�
decode

�
learn

�
{(xi,yi)}N

i=1

⇥
,xN+i

⇥
,yN+i

⇥

Structured	Perceptron

• Described	as	an	online	algorithm.
• On	each	iteration,	take	one	example,	and	
update	the	weights	according	to:

• Not	discussing	today:		the	theoretical	
guarantees	this	gives,	separability,	and	the	
averaged	and	voted	versions.

w ⇥ w + � (g(xt,yt)� g(xt,decode(w,xt)))

Empirical	Risk	Minimization

• A	unifying	framework	for	many	learning	
algorithms.

• Many	options	for	the	loss	function	L	and	the	
regularization	function	R.

learn
�
{(xi,yi)}N

i=1

⇥
= arg max

w
�

�
w, {(xi,yi)}N

i=1

⇥

= arg min
w

1
N

N⇤

i=1

L(w,xi,yi)

⌃ ⇧⌅ ⌥
� E[L(w,X,Y)]

+R(w)

Loss	Functions	You	May	Know

Name Expression	of	
Log	loss	(joint)

Log	loss	
(conditional)
Zero-one	loss

Expected	zero-one	
loss

1{decode(w,x) �= y}

� log p(y | x,w)

� log p(x,y | w)

1� p(y | x,w)

L(w,x,y)

Loss	Functions	You	May	Know

Name Expression	of
Log	loss	(joint)

Log	loss	
(conditional)
Cost

Expected	cost,	
a.k.a.	“risk”

cost(decode(w,x),y)

Ep(Y |x,w)[cost(Y ,y)]

� log p(y | x,w)

� log p(x,y | w)
L(w,x,y)

Some	Questions

• Where	do	CRFs	fit	into	this	picture?
• Where	does	the	structured	perceptron	fit	into	
this	picture?

• Do	people	directly	minimize	cost	or	expected	
cost?

CRFs	and	Loss

• Plugging	in	the	log-linear	form	(and	not	
worrying	at	this	level	about	locality	of	
features):

� log p(y | x,w) = �w�g(x,y) + log
�

y�

expw�g(x,y)

�L

�wj
= �gj(x,y) + Ep(Y |x,w)[gj(x,Y)]

‘

Training	CRFs	and	
Other	Log-Linear	Models

• Early	days:		iterative	scaling	(specialized	
method)

• ~2002:		quasi-Newton	methods
• ~2006:		stochastic	gradient	descent	(LeCun,	
1998)

Perceptron	and	Loss

• Not	clear	immediately	what	L	is,	but	the	
“gradient” of	L	should	be:

• The	vector	of	above	quantities	is	actually	a	
subgradient of:

�gj(x,y) + gj(x,decode(w,x))

L(w,x,y) = �w⇥g(x,y) + max
y�

w⇥g(x,y�)

Compare

• CRF	(log-loss):

• Perceptron:

L(w,x,y) = �w⇥g(x,y) + max
y�

w⇥g(x,y�)

� log p(y | x,w) = �w�g(x,y) + log
�

y�

expw�g(x,y)

�L

�wj
= �gj(x,y) + Ep(Y |x,w)[gj(x,Y)]

‘

Loss	Functions	You	Know

Name Expression	of Convex?
Log	loss	(joint)

✔

Log	loss	
(conditional) ✔

Cost

Expected	cost,	
a.k.a.	“risk”
Perceptron	loss

✔

cost(decode(w,x),y)
Ep(Y |x,w)[cost(Y ,y)]

� log p(y | x,w)
� log p(x,y | w)

L(w,x,y) = �w⇥g(x,y) + max
y�

w⇥g(x,y�)

L(w,x,y)

Loss	Functions	You	Know

Name Expression	of Cont.?
Log	loss	(joint)

✔

Log	loss	
(conditional) ✔

Cost

Expected	cost,	
a.k.a.	“risk” ✔

Perceptron	loss
✔

cost(decode(w,x),y)
Ep(Y |x,w)[cost(Y ,y)]

� log p(y | x,w)
� log p(x,y | w)

L(w,x,y)

L(w,x,y) = �w⇥g(x,y) + max
y�

w⇥g(x,y�)

Loss	Functions	You	Know

Name Expression	of Cost?
Log	loss	(joint)

Log	loss	
(conditional)
Cost

✔

Expected	cost,	
a.k.a.	“risk” ✔

Perceptron	loss

cost(decode(w,x),y)
Ep(Y |x,w)[cost(Y ,y)]

� log p(y | x,w)
� log p(x,y | w)

L(w,x,y) = �w⇥g(x,y) + max
y�

w⇥g(x,y�)

L(w,x,y)

The	Ideal	Loss	Function

For	computational	convenience:
• Convex
• Continuous
For	good	performance:
• Cost-aware
• Theoretically	sound

On	Regularization

• In	principle,	this	choice	is	
orthogonal	to	the	loss	
function.

• Squared	L2 norm	is	the	most	
common	starting	place.

• L1 and	other	sparsity-inducing	
regularizers are	attracting	
more	attention	lately.

R(w) = kwk22
=

X

j

w2
j

R(w) = kwk1
=

X

j

|wj |

λ

λ

λ

λ

Practical	Advice

• Features	still	more	important	than	the	loss	
function.
– But	general,	easy-to-implement	algorithms	are	quite	
useful!

• Perceptron	is	easiest	to	implement.
• CRFs	and	max	margin	techniques	usually	do	
better.

• Tune	the	regularization	constant,	λ.
– Never	on	the	test	data.

