Empirical Risk Minimization



Outline

* Empirical risk minimization view

— Perceptron
— CRF



Warning: Math Ahead



Notation for Linear Models

Training data: {(Xli yl)/ (X21 y2)l vy (XNI yN)}

Testing data: {(Xy.1 Ynet)s - (Xnaens Ynaen')t
Feature function: g

Weights: w
Decoding:
decode(w,x) = argmaxw g(x,y)
Learning: Y
learn ({(z;,y;)}iv1) = argmax® (w,{(z;,y;)}2;)
Evaluation: v
1 X

7 cost (decode (learn ({(zi, y;)}ic1) s TN+i) » Ynti)
i=1



Structured Perceptron

* Described as an online algorithm.

* On each iteration, take one example, and
update the weights according to:

W W‘|—Oé(g(mtayt)_g(wtvdeCOde(vat)))

* Not discussing today: the theoretical
guarantees this gives, separability, and the
averaged and voted versions.



Empirical Risk Minimization

* A unifying framework for many learning
algorithms.

learn ({(wwyz)}i\il) = argmvgxcb(w,{(wi,yi)},fil)

N
1
= arg m“i,H N ; L(W, L;, yz) —|—R(W)

\ J/
N

~ E[L(w,X,Y)]

 Many options for the loss function L and the
regularization function R.



Loss Functions You May Know

Name | Expression of L(w.z.y

Log loss (joint)

Log loss

(conditional) - log p(y | €L, W)
Zero-one loss 1{decode(w, .’,E) # y}

Expected zero-one 1 —

loss p(y ‘ CB,W)



Loss Functions You May Know

Name | Expression of L(w.z.y

Log loss (joint)

:fc;gnldoist?onal) - log p(y | L, W)
cost cost(decode(w, ), y)
E?(E:,CE‘??SESSL 4:P(Y|a3,w) [COSt(Yv y)]



Some Questions

 Where do CRFs fit into this picture?

 Where does the structured perceptron fit into
this picture?

* Do people directly minimize cost or expected
cost?



CRFs and Loss

* Plugging in the log-linear form (and not
worrying at this level about locality of
features):

—logp(y |z, w) = —w' gz, y)+ logZeXp w' gz, y)
y/
oL

810]' = Y (CB, y) + EP(Y|fB,W) [gj (33, Y)]



Training CRFs and
Other Log-Linear Models

Early days: iterative scaling (specialized
method)

~2002: quasi-Newton methods

~2006: stochastic gradient descent (LeCun,
1998)



Perceptron and Loss

* Not clear immediately what L is, but the
“gradient” of L should be:

—9j(®,y) + g;(x, decode(w, ))

* The vector of above quantities is actually a
subgradient of:

Liw,z,y) = -w g(@y)+maxw g(z,y)
Yy



Compare

* CRF (log-loss):

—logp(y | z,w) = —wig(x,y)+log) expw' g(z,y)
y/

. Percepter_n:

L(W,w,y) = _WTg(a;,y)—|—mg}wag(w,y')
(J



Loss Functions You Know

Name ___ Expression of L(w.z.y

Log loss (joint) logp(x,y | w) d
zfc;gnlgiﬁc?onal) o ng(y ‘ ot W) g
Cost COSt(deCOde(W, CB)) y)

e Epy)z,w)[cost (Y, y)]

Perceptron loss —ng(a:, y) HlE}X ng(w, y/) v,
Y




Loss Functions You Know

Name ___ Expression of L(w.z.y

Log loss (joint) log p(e, y | w) v
conaora) — 108 p(Y | x, W) d
ot cost(decode(w, ), y)

ea e Ep(Y |z,w) [COSHY, )] d

Perceptron loss —ng(w, y) HlE}X ng(w, y/) v,
Y



Loss Functions You Know

Name ___ Expression of L(w.z.y

Log loss (joint) . ng(.’.l?, y W)

Log loss 1

(conditional) T --Og p(y ‘ L, W)

o cost(decode(w, x), y)

e e Ep(y|a,w)[cost(Y, y)] v

Perceptron loss —ng(w, y) HlE}X ng(w, y/)
Y




The Ideal Loss Function

For computational convenience:
* Convex

* Continuous

For good performance:

* Cost-aware

* Theoretically sound



On Regularization

* |n principle, this choice is
orthogonal to the loss
function.

* Squared L, norm is the most  R(w) =x||w||3
common starting place.

* L, and other sparsity-inducing R(w) =N|w||;
regularlzers are attracting
more attention lately. =y |w;|



Practical Advice

Features still more important than the loss
function.

— But general, easy-to-implement algorithms are quite
useful!

Perceptron is easiest to implement.

CRFs and max margin techniques usually do
better.

Tune the regularization constant, A.
— Never on the test data.



