
Experimentation



Generalization

• We	want	to	know	how	a	predictor	will	
perform	in	general.

• What	do	you	mean	in	general?
– “Average”	behavior	for	all	possible	inputs	(e.g.,	
sentences,	DNA	sequences,	corpora,	…),	even	the	
ones	we	don’t	have	in	our	training/test	data

Ep(x,y)cost(h(x),y)



Experimentation

• That	expectation	can’t	be	computed
– Rather	than	looking	at	all	possible	inputs	(maybe	
infinite!	Maybe	huge!),	look	at	a	representative	
sample of	inputs

– Make	inferences from	these	experiments	about	the	
rest	of	the	“population”

– Rough	idea:	if	we	do	well	on	a	representative	sample,	
we	will	do	well	on	the	whole	population

• Mathematics	can	provide	conditions	under	which	
these	inferences	will	be	true	with	high	probability



Standard	Methodology

• We	want	to	compare	at	two	predictors	
and					that	differ	in	a	well-defined	way
– Data	used	to	train	them
– Algorithm	used	to	train	them
– Training	objective	(e.g.,	conditional	vs.	joint)
– Feature	set	used
– Inference	method	(e.g.,	exact	vs.	approximate)
– Decoding	objective	(e.g.,	MAP	vs.	MBR)

h h0



Which	predictor	is	better?

Ep(x,y)[cost (h(x),y)] < Ep(x,y)[cost (h
0(x),y)]

We	would	like	to	know	whether:

Unfortunately,	we	cannot	generally	know	this!	L



Which	predictor	is	better?

Ep(x,y)[cost (h(x),y)] < Ep(x,y)[cost (h
0(x),y)]
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We	would	like	to	know	whether:

Unfortunately,	we	cannot	generally	know	this!	L

But	we	can	know	the	following:	J



Other	Scenarios

• We	may	want	to	compare	more	than	two	
predictors

• We	may	want	to	compare	more	than	one	cost	
function

• We	may	be	working	with	cost	functions	that	
are	defined	at	the	corpus	level
– BLEU,	F-measure,	etc.



Held-Out	Test	Sets

• Number	one	rule:	Keep	your	training	data	out	of	your	
test	data

• If	this	sounds	simple,	it	is	anything	but
– Selecting	hyperparameters by	looking	at	the	test	set	scores
– Every	year	many papers	are	published	that	violate	this!

• Standard	recipe
– Training	data	(possibly	further	subdivided	into	training	&	
tuning)

– Held-out	development	data	[use	while	developing	system]
– Blind	test	data [for	publication	only]



Held-Out	Test	Sets

• Years	of	experimentation	with	“blind”	test	sets	means	
they	aren’t	“blind”	any	longer!

• Strategies	for	dealing	with	this
– Periodic	creation	of	new	test	community	sets
– Fix	all	parameters	of	development	data,	report	on	held-out	
test	data	[publication	bias]

– Cross-validation

• I’ll	say	it	again: Using	held-out	test	data	is	the	single	
most	important	thing	you	can	do	to	ensure	your	
experiments	give	generalization	insight



Generalization:	Cross	Validation
• Sample	train/dev/test	data	from	D
• K-fold	cross	validation

– Select	k	train/dev/test	splits
• In	the	limit:	k=N,	“leave-one-out”	CV

– If	you	have	N	training	instances,	run	N	experiments	training	on	
N-1	instances

• Pros
– More	statistical	power
– Better	use	of	limited	data	resources

• Cons
– Computationally	expensive
– Not	terribly	common	in	structured	prediction



Oracles	and	Upper	Bounds

• What	is	the	best	possible	performance	knowing	
something	about	the	test	set?
– Up	to,	and	including,	the	test	set!

• Examples
– Tuning	hyperparameters or	parameters	on	the	test	set
– Using	gold	standard	parse	trees	or	NER	labels	for	a	
downstream	information	extraction	task

• Answers	a	different	question	than	generalization:	
does	my	model	have	adequate	“capacity”?



Back	to	Generalization

• Is	held-out	data	enough?
• How	many	samples	do	we	need	to	make	
reliable	inferences?
– If	you	see	big	differences,	you	probably	need	
fewer	samples

– If	you	do	lots	of	similar	experiments	looking	for	an	
effect,	you’re	more	likely	to	hit	one	“by	chance”-
can	we	control	for	this	(false	discovery)

• This	brings	us	to…



Statistical	Hypothesis	Testing

• Statistical	predictors	!=	statistical	evaluation
– You	can	do	statistical	evaluation	of	non-statistical	
predictors!

• Hypothesis	testing	in	one	sentence:	How	likely	is	
the	behavior	we’re	seeing	if	it	is	due	to	chance?

• Hypothesis	testing	is	not	magical
– p-values	are	not	the	probability	your	claim	is	wrong
– At	best,	you	find	out	the	probability	of	some	pattern	
of	results	if	it	were	due	to	chance
• If	the	your	results	are	unlikely	given	chance,	this	does	not	
mean the	hypothesis	you	formulated	was	true;	converse	is	
also	true



Statistical	Hypothesis	Testing

• Formulate	a	null	hypothesis
– Skeptical	perspective:	e.g.,	two	experimental	
scenarios	are	the	same

• Set	a	threshold	with	which	we	reject	the	null	
hypothesis,	usually	

• What	is	the	probability	of	the	experimental	
observations,	assuming	the	null	hypothesis?
– If																,	then	we	can	reject

H0

↵ 2 {0.05, 0.01, 0.001}

p < ↵ H0



Parameters	&	Statistics

ui ⇠ Ui, i = [1, N ]

vi = v(ui), (ie., vi ⇠ V )

µV
.
= Ep(u)[v(u)] =

R
v(u) · p(u)du

The	mean (a	parameter)	is	not a	random	variable;
it	is	a	real	number.

The	sample	mean	(a	statistic)	is	a	function	of							,
and	therefore	is	a	random	variable

u

µ̂V = 1
N

PN
i=1 vi



Sampling	Distribution

• A	statistic,	e.g.	our	sample	mean

is	a	random	variable.

• What	distribution	is	it	drawn	from,	i.e.	can	we	
say	something	about	the	following?

µ̂V = 1
N

PN
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µ̂V ⇠ Distribution(✓)



Sampling	Distribution

• Under	some	weak	assumptions,	a	central	limit	
theorem	tells	us

• This	is	an	awesome	result!	As	N gets	bigger,	
the	expected	deviation	from	the	parameter	of	
interest	drops.

µ̂V ⇠ N
⇣
µV ,

�2
V
N

⌘



Standard	Error

• What	is	the	standard	deviation	of	the	sample	
mean?

�V parameter	of	global	population
�µ̂V parameter	of	sampling	distribution

�µ̂V = �Vp
N



Standard	Error

• What	is	the	standard	deviation	of	the	sample	
mean?

�V parameter	of	global	population
�µ̂V parameter	of	sampling	distribution

statistic:	the	sample	standard	deviation�̂V

�µ̂V = �Vp
N

�̂V =
q
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Standard	Error

• We	can	now	state	the	standard	error

• This	idea	of	replacing	the	true	distribution	
(which	we	cannot	know)	with	samples	is	the	
same	thing	we	did	with	Monte	Carlo	
techniques.

�̂µV =

q
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Other	Parameters/Statistics

• Any	generalized	mean:
– min,	median,	…,	max

• Proportions
– proportion	of	a	population	for	which	property	P	
holds

• Other	functions
– BLEU	score,	F-measure,	word	error	rate…

• Except	for	proportions,	these	statistics	don’t	
have	a	closed	form	of	the	standard	error



Bootstrap	(Efron,	1979)

• Monte	Carlo	technique	to	estimate	standard	
error	of	some	statistic

• We	have	a	sample	of	N draws	from U

• For	i=1	to	B,	resample	N times	from	the	
empirical	distribution	of

u = (u1, u2, . . . , uN )

u

u(i) = (u(i)
1 , u(i)

2 , . . . , u(i)
N )

✓̂V



• From	the	sequence	of	bootstrap	samples
estimate	the	standard	error
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