
EM Part 2

The EM Algorithm

E
q(t)i (y)

[log pw(x̃i,y)]

=

What Do We Need?
• Start with the M step

• What values do we need? These are called sufficient
statistics. They depend on your model.

• In an HMM, we need to know the number of times

• You are in state s

• You transition from state s to state t

• You emit symbol x from state s

Helpful Recipe

• Think about the complete-data likelihood

• What are the various quantities you need to
compute the MLE?

• Replace these quantities with their
expected values under the q distribution

• Run MLE as normal

• Repeat

Why Does EM Work?
�ML(w) =

ÑX

i=1

log
X

y2Yx̃

pw(x̃,y)

wt+1
Theorem. At every step of the above algorithm 
the M step will find an such that

�ML(w
(t+1)) � �(w(t))

Proof. We define the following quantity.

Q(t)(w) =
ÑX

i=1

X

y2Yx̃i

q(t)i (y) log pw(t)(x̃i,y)

q(t)i (y) = pw(i)(y | x̃i)where

Consider the difference between the likelihood  
objective and Q(t)(w)�(w)

�(w)�Q(t)(w)

=
ÑX

i=1

log
X

y02Yx̃i

pw(x̃i,y
0)�

ÑX

i=1

X

y2Y
q(t)i (y) log pw(x̃i,y)

=
ÑX

i=1

X

y2Y
q(t)i (y) log

X

y02Yx̃i

pw(x̃i,y
0)�

ÑX

i=1

X

y2Y
q(t)i (y) log pw(x̃i,y)

=
ÑX

i=1

X

y2Y
q(t)i (y) log

P
y02Yx̃i

pw(x̃i,y0)

pw(x̃i,y)

= �
ÑX

i=1

X

y2Y
q(t)i (y) log

pw(x̃i,y)P
y02Yx̃i

pw(x̃i,y0)

= �
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w)�Q(t)(w) = �
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w) = Q(t)(w)�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w)�Q(t)(w) = �
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w) = Q(t)(w)�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

Recall that the M step does the following:

w(t+1) = argmax
w

Q(t)(w)

�(w)�Q(t)(w) = �
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w) = Q(t)(w)�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

Recall that the M step does the following:

w(t+1) = argmax
w

Q(t)(w)

Therefore (part 1),

max
w

Q(t)(w) = Q(t)(w(t+1)) � Q(t)(w(t))

�(w)�Q(t)(w) = �
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w) = Q(t)(w)�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(t+1)(y | x̃i) � �

ÑX

i=1

X

y2Y
q(t)i (y) log pw(t)(y | x̃i)

�(w)�Q(t)(w) = �
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w) = Q(t)(w)�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

0

@�
ÑX

i=1

X

y2Y
q(t)i (y) log pw(t+1)(y | x̃i)

1

A�

0

@
ÑX

i=1

X

y2Y
q(t)i (y) log pw(t)(y | x̃i)

1

A

=
ÑX

i=1

X

y2Y
q(t)i (y) log pw(t)(y | x̃i)�

ÑX

i=1

X

y2Y
q(t)i (y) log pw(t+1)(y | x̃i)

=
ÑX

i=1

X

y2Y
q(t)i (y) log

pw(t)(y | x̃i)

pw(t+1)(y | x̃i)

=
ÑX

i=1

X

y2Y
q(t)i (y) log

q(t)i (y)

pw(t+1)(y | x̃i)

=
ÑX

i=1

DKL

⇣
q(t)i (y) || pw(t+1)(y | x̃i)

⌘

� 0

In the structured case

• Let us assume the latent variables (and
probably the observations) are structured

• EM works just the same as always

•

p(y | x;✓(t)) =
p(x,y;✓(t))

P
y2Yx

p(x,y;✓(t))

Aggregate Bigram Model

• Process

• Let = <s>

• Let i = 0

• While </s> repeat:

•

• Sample a class from

• Sample a word from

x0

i i+ 1

yi

xi

xi 6=

p(Y = yi|X = xi�1)

p(X = xi|Y = yi)

Saul & Pereira. (1997). “Word Classes”

Aggregate Bigram Model
The parameters of the model are:

The probability of every word in the
vocabulary following every class.  

The probability of every class following
every word in the vocabulary.

How many are there in total?

|�| = |V |�K � 2

a(x|y) =

b(y|x) =

� = ha, bi

Aggregate Bigram Model
The parameters of the model are:

The probability of every word in the
vocabulary following every class.  

The probability of every class following
every word in the vocabulary.

How many are there in total?

|�| = |V |�K � 2

a(x|y) =

b(y|x) =

� = ha, bi

Aggregate Bigram Model
The parameters of the model are:

The probability of every word in the
vocabulary following every class.  

The probability of every class following
every word in the vocabulary.

How many are there in total?

|�| = |V |�K � 2

a(x|y) =

b(y|x) =

� = ha, bi

Aggregate Bigram Model

<s>

1

Aggregate Bigram Model

<s> C1

b(C1|�s⇥)

1

Aggregate Bigram Model

<s> JohnC1

b(C1|�s⇥)

a(John|C1)1

Aggregate Bigram Model

<s> JohnC1 C4

b(C1|�s⇥)

a(John|C1)

b(C4|John)

1

Aggregate Bigram Model

<s> John leftC1 C4

b(C1|�s⇥)

a(John|C1)

b(C4|John)

a(left|C4)1

Aggregate Bigram Model

<s> John leftC1 C4 C3

b(C1|�s⇥)

a(John|C1)

b(C4|John)

a(left|C4)

b(C3|left)

1

Aggregate Bigram Model

<s> John left </s>C1 C4 C3

b(C1|�s⇥)

a(John|C1)

b(C4|John)

a(left|C4)

b(C3|left)

a(�/s⇥|C3)1

• How do we learn parameters?

• We have a joint probability model

• We have some observable data (the
words)

• We have some hidden data (the classes)  

Aggregate Bigram Model

• How do we learn parameters?

• We have a joint probability model

• We have some observable data (the
words)

• We have some hidden data (the classes)  

Aggregate Bigram Model

EM

Aggregate Bigram Model

<s> John left </s>?? ?? ??

Aggregate Bigram Model

<s> John??

Aggregate Bigram Model

xi-1 xiyi

Aggregate Bigram Model

xi-1 xiyi

b(yi|xi�1)

Aggregate Bigram Model

xi-1 xiyi

b(yi|xi�1) �a(xi|yi)

Aggregate Bigram Model

xi-1 xiyi

b(yi|xi�1) �a(xi|yi)

p(yi|xi�1, xi) =
b(yi|xi�1)� a(xi|yi)PK

y0=1 b(y
0|xi�1)� a(xi|y0)

Example

• Let’s treat the letters in English words as
the “words” in our language

• Output: clustering over letters

• For this example, we assume K=2

Likelihood

c1$Iteration

c1
$L
LH

-104000

-102000

-100000

-98000

-96000

10 20 30 40

<s> F U N </s>2 12 1

</s> 0.23
E 0.19
A 0.11
I 0.11

O 0.09
T 0.04
U 0.04

H 0.04
S 0.03
L 0.03

N 0.23
S 0.19
R 0.11
T 0.11

C 0.09
D 0.04
L 0.04

G 0.04
M 0.03
P 0.03

What was learned?
a(X = · | Y = 2)a(X = · | Y = 1)

Word Alignment

das Haus

the bookthe house

ein Buch das Buch

a book

Lexical Translation
• Goal: a model

• where and are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in in is generated from exactly one word
in

• Thus, we have an alignment that indicates which word 
 “came from”, specifically it came from .

• Given the alignments , translation decisions are
conditionally independent of each other and depend only
on the aligned source word .

p(e | f,m)

e f

eei
f

ai
ei fai

a

e = he1, e2, . . . , emi f = hf1, f2, . . . , fni

Lexical Translation
• Goal: a model

• where and are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in in is generated from exactly one word
in

• Thus, we have an alignment that indicates which word 
 “came from”, specifically it came from .

• Given the alignments , translation decisions are
conditionally independent of each other and depend only
on the aligned source word .

p(e | f,m)

e f

eei
f

ai
ei fai

a

fai

IBM Model 1
• Simplest possible lexical translation model

• Additional assumptions

• The m alignment decisions are independent

• The alignment distribution for each is uniform
over all source words and NULL

ai

for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

p(e,a | f,m) =

IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

1

1 + n
p(e,a | f,m) =

IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

1

1 + n
p(ei | fai)p(e,a | f,m) =

IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY

i=1

1

1 + n
p(ei | fai)p(e,a | f,m) =

p(ei, ai | f,m) =
1

1 + n
p(ei | fai)

p(e,a | f,m) =
mY

i=1

p(ei, ai | f,m)

Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

Recall our independence assumption: all alignment decisions are
independent of each other, and given alignments all translation
decisions are independent of each other, so all translation
decisions are independent of each other.

p(a, b, c, d) = p(a)p(b)p(c)p(d)
p(e | f,m) =

mY

i=1

p(ei | f,m)

Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

p(e | f,m) =
mY

i=1

p(ei | f,m)

Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

p(e | f,m) =
mY

i=1

p(ei | f,m)

=
mY

i=1

nX

ai=0

1

1 + n
p(ei | fai)

=
1

(1 + n)m

mY

i=1

nX

ai=0

p(ei | fai)

Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

p(e | f,m) =
mY

i=1

p(ei | f,m)

=
mY

i=1

nX

ai=0

1

1 + n
p(ei | fai)

=
1

(1 + n)m

mY

i=1

nX

ai=0

p(ei | fai)

Example

das Haus ist klein
1 2 3 4

1 2 43

NULL
0

Start with a foreign sentence and a target length.

Example

das Haus ist klein

the house

1 2 3 4

1 2 4
is small
3

NULL
0

Example

das Haus ist klein

thehouse

1 2 3 4

1 2 4
is small

3

NULL
0

freq(Buch, book) =?

freq(das, book) =?

freq(ein, book) =?

Ep
w(1) (a|f=das Buch,e=the book)

X

i

I[ei = book, fai = Buch]

freq(Buch, book) =
X

i

I(ẽi = book, f̃ai = Buch)

Convergence

Evaluation

• Since we have a probabilistic model, we can
evaluate perplexity.

PPL = 2
� 1P

(e,f)2D |e| log
Q

(e,f)2D p(e|f)

Iter 1 Iter 2 Iter 3 Iter 4 ... Iter ∞

-log likelihood - 7.66 7.21 6.84 ... -6

perplexity - 2.42 2.3 2.21 ... 2

Hidden Markov Models
• GMMs, the aggregate bigram model, and

Model 1 don’t have conditional
dependencies between random variables

• Let’s consider an example of a model
where this is not the case

p(x) =
X

y02Yx

⌘(y|x| ! stop)

|x|Y

i=1

⌘(yi�1 ! yi)⇥ �(yi # xi)

EM for HMMs

• What statistics are sufficient to determine
the parameter values?

freq(q # x) How often does q emit x?

freq(q ! r) How often does q transition to r?

freq(q) How often do we visit q?

freq(q) =
X

r2Q
freq(q ! r)

And of course...

p(y2 = q, y3 = r | x) / p(y2 = q, y3 = r,x)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)P

q0,r02Q ↵2(q0)⇥ �3(r0)⇥ ⌘(q0 ! r0)⇥ ⌘(r0 # x3)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)

p(x) = ↵|x|(stop)

a b b b c

↵2(s2) �3(s2)

i=1$ i=2$ i=3$ i=4$ i=5$

p(y2 = q, y3 = r | x) / p(y2 = q, y3 = r,x)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)P

q0,r02Q ↵2(q0)⇥ �3(r0)⇥ ⌘(q0 ! r0)⇥ ⌘(r0 # x3)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)

p(x) = ↵|x|(stop)

E[freq(q ! r)] =

|x|X

i=1

p(yi = q, yi+1 = r | x)

The expectation over the full structure is then

The expectation over state occupancy is

E[freq(q)] =
X

r2Q
E[freq(q ! r)]

What is ? E[freq(q # x)]

Random Restarts

• Non-convex optimization only finds a local
solution

• Several strategies

• Random restarts

• Simulated annealing

Decipherment

Grammar Induction

Inductive Bias

• A model can learn nothing without
inductive bias ... whence inductive bias?

• Model structure

• Priors (next week)

• Posterior regularization (Google it)

• Features provide a very flexible means to
bias a model

EM with Features

• Let’s replace the multinomials with log
linear distributions

⌘(q ! r) = ✓q,r

=
expw>f(q, r)P

q02Q expw>f(q0, r)

How will the likelihood of this model compare  
to the likelihood of the previous model?

Learning Algorithm I

• E step

• given model parameters, compute
posterior distribution over transitions
(states, etc)

• compute

• These are your “empirical” expectations

Eq(y)

X

q,r

f(q, r)

Learning Algorithm 1

• M step

• The gradient of the expected log
likelihood of x,y under q(y) is

• Use LBFGS or gradient descent to solve

rEq(y) log p(x,y) = Eq

X

q,r

f(q, r)�
X

q,r

Eq[freq(q)]Ep(r|q;w)f(q, r)

