EM Part 2

The EM Algorithm

Input: initial model parameters $\mathbf{w}^{(0)}$, training data $\langle \tilde{x}_1, \ldots, \tilde{x}_{\tilde{N}} \rangle$ **Output:** learned parameters \mathbf{w}

repeat

 $t \leftarrow 0$

E step:
for
$$i = 1$$
 to \tilde{N} **do**
 $\forall \boldsymbol{y} \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}, q_i^{(t)}(\boldsymbol{y}) \leftarrow p_{\mathbf{w}^{(t)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i) = \frac{p_{\mathbf{w}^{(t)}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y})}{\sum_{\boldsymbol{y}' \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} p_{\mathbf{w}^{(t)}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y}')}$

end for

What Do We Need?

• Start with the M step

$$\mathbf{w}^{(t+1)} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y})$$

- What values do we need? These are called sufficient statistics. They depend on your model.
- In an HMM, we need to know the number of times
 - You are in state s
 - You transition from state s to state t
 - You emit symbol x from state s

Helpful Recipe

- Think about the complete-data likelihood
- What are the various quantities you need to compute the MLE?
- Replace these quantities with their
 expected values under the q distribution
- Run MLE as normal
- Repeat

$$\Phi_{ML}(\mathbf{w}) = \sum_{i=1}^{N} \log \sum_{\mathbf{y} \in \mathcal{Y}_{\tilde{\mathbf{x}}}} p_{\mathbf{w}}(\tilde{\mathbf{x}}, \mathbf{y})$$

Theorem. At every step of the above algorithm the M step will find an w^{t+1} such that

 $\Phi_{ML}(\mathbf{w}^{(t+1)}) \ge \Phi(\mathbf{w}^{(t)})$

Proof. We define the following quantity.

$$Q^{(t)}(\mathbf{w}) = \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}^{(t)}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y})$$

where $q_i^{(t)}(\boldsymbol{y}) = p_{\mathbf{w}^{(i)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)$

Consider the difference between the likelihood objective $\Phi(\mathbf{w})$ and $Q^{(t)}(\mathbf{w})$

 $\Phi(\mathbf{w}) - Q^{(t)}(\mathbf{w})$

$$= \sum_{i=1}^{\tilde{N}} \log \sum_{\boldsymbol{y}' \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} p_{\boldsymbol{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y}') - \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\boldsymbol{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y})$$

$$= \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log \sum_{\boldsymbol{y}' \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} p_{\boldsymbol{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y}') - \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\boldsymbol{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y}')$$

$$= \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log \frac{\sum_{\boldsymbol{y}' \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} p_{\mathbf{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y}')}{p_{\mathbf{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y})}$$

$$= -\sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log \frac{p_{\mathbf{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y})}{\sum_{\boldsymbol{y}' \in \mathcal{Y}_{\tilde{\boldsymbol{x}}_i}} p_{\mathbf{w}}(\tilde{\boldsymbol{x}}_i, \boldsymbol{y}')}$$

$$= -\sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)$$

$$\Phi(\mathbf{w}) - Q^{(t)}(\mathbf{w}) = -\sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)$$
$$\Phi(\mathbf{w}) = Q^{(t)}(\mathbf{w}) - \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)$$

$$\Phi(\mathbf{w}) - Q^{(t)}(\mathbf{w}) = -\sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)$$
$$\Phi(\mathbf{w}) = Q^{(t)}(\mathbf{w}) - \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)$$

Recall that the M step does the following:

$$\mathbf{w}^{(t+1)} = \arg\max_{\mathbf{w}} Q^{(t)}(\mathbf{w})$$

$$\Phi(\mathbf{w}) - Q^{(t)}(\mathbf{w}) = -\sum_{i=1}^{\tilde{N}} \sum_{\mathbf{y} \in \mathcal{Y}} q_i^{(t)}(\mathbf{y}) \log p_{\mathbf{w}}(\mathbf{y} \mid \tilde{\mathbf{x}}_i)$$
$$\Phi(\mathbf{w}) = Q^{(t)}(\mathbf{w}) - \sum_{i=1}^{\tilde{N}} \sum_{\mathbf{y} \in \mathcal{Y}} q_i^{(t)}(\mathbf{y}) \log p_{\mathbf{w}}(\mathbf{y} \mid \tilde{\mathbf{x}}_i)$$

Recall that the M step does the following:

$$\mathbf{w}^{(t+1)} = \arg\max_{\mathbf{w}} Q^{(t)}(\mathbf{w})$$

Therefore (part I), $\max_{\mathbf{w}} Q^{(t)}(\mathbf{w}) = Q^{(t)}(\mathbf{w}^{(t+1)}) \ge Q^{(t)}(\mathbf{w}^{(t)})$

$$\Phi(\mathbf{w}) = \mathbf{Q}^{(t)}(\mathbf{w}) - \sum_{i=1}^{\tilde{N}} \sum_{\mathbf{y} \in \mathcal{Y}} q_i^{(t)}(\mathbf{y}) \log p_{\mathbf{w}}(\mathbf{y} \mid \tilde{\mathbf{x}}_i)$$

$$\Phi(\mathbf{w}) = Q^{(t)}(\mathbf{w}) - \sum_{i=1}^{\tilde{N}} \sum_{\mathbf{y} \in \mathcal{Y}} q_i^{(t)}(\mathbf{y}) \log p_{\mathbf{w}}(\mathbf{y} \mid \tilde{\mathbf{x}}_i)$$

$$\begin{pmatrix} -\sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}^{(t+1)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i) \end{pmatrix} - \left(\sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}^{(t)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i) \right) \\ = \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}^{(t)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i) - \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log p_{\mathbf{w}^{(t+1)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i) \\ \end{cases}$$

$$= \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log \frac{p_{\mathbf{w}^{(t)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)}{p_{\mathbf{w}^{(t+1)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)}$$

$$= \sum_{i=1}^{\tilde{N}} \sum_{\boldsymbol{y} \in \mathcal{Y}} q_i^{(t)}(\boldsymbol{y}) \log \frac{q_i^{(t)}(\boldsymbol{y})}{p_{\mathbf{w}^{(t+1)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i)}$$

$$= \sum_{i=1}^{\tilde{N}} D_{KL} \left(q_i^{(t)}(\boldsymbol{y}) \mid\mid p_{\mathbf{w}^{(t+1)}}(\boldsymbol{y} \mid \tilde{\boldsymbol{x}}_i) \right)$$

 ≥ 0

In the structured case

$$p(\boldsymbol{y} \mid \boldsymbol{x}; \boldsymbol{\theta}^{(t)}) = \frac{p(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}^{(t)})}{\sum_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} p(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}^{(t)})}$$

- Let us assume the latent variables (and probably the observations) are structured
- EM works just the same as always

- Process
 - Let $x_0 = \langle s \rangle$
 - Let i = 0
 - While $x_i \neq </s$ repeat:
 - $i \leftarrow i + 1$
 - Sample a class y_i from $p(Y = y_i | X = x_{i-1})$
 - Sample a word x_i from $p(X = x_i | Y = y_i)$

Saul & Pereira. (1997). "Word Classes"

The parameters of the model are:

 $\theta = \langle a, b \rangle$

a(x|y) =The probability of every word in the vocabulary following every class.

b(y|x) = The probability of every class following every word in the vocabulary.

The parameters of the model are:

 $\theta = \langle a, b \rangle$

a(x|y) =The probability of every word in the vocabulary following every class.

b(y|x) = The probability of every class following every word in the vocabulary.

How many are there in total?

The parameters of the model are:

 $\theta = \langle a, b \rangle$

a(x|y) =The probability of every word in the vocabulary following every class.

b(y|x) = The probability of every class following every word in the vocabulary.

How many are there in total?

 $|\theta| = |V| \times K \times 2$

1

 $b(C1|\langle \mathbf{s} \rangle)$

1

$$b(C1|\langle \mathbf{s} \rangle)$$

$$\begin{array}{c} < \mathbf{s} \rightarrow \mathbf{CI} \rightarrow \mathbf{John} \\ 1 & a(\mathbf{John}|C1) \end{array}$$

- How do we learn parameters?
 - We have a joint probability model
 - We have some observable data (the words)
 - We have some hidden data (the classes)

- How do we learn parameters?
 - We have a joint probability model
 - We have some observable data (the words)
 - We have some hidden data (the classes)

$$b(y_i|x_{i-1})$$

 $b(y_i|x_{i-1}) \times a(x_i|y_i)$

$$p(y_i|x_{i-1}, x_i) = \frac{b(y_i|x_{i-1}) \times a(x_i|y_i)}{\sum_{y'=1}^{K} b(y'|x_{i-1}) \times a(x_i|y')}$$

Example

- Let's treat the **letters** in English words as the "words" in our language
 - Output: clustering over letters
- For this example, we assume K=2

Likelihood

What was learned?

L

$$a(X = \cdot \mid Y = 2)$$

Ν	0.23		
S	0.19		
R	0.11		
Т	0.11		
С	0.09		
D	0.04		
L	0.04		
G	0.04		
Μ	0.03		
Р	0.03		

Word Alignment

das Haus ein Buch das Buch

the house a book the book

Lexical Translation

• Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$

• where eand fare complete English and Foreign sentences $\mathbf{e} = \langle e_1, e_2, \dots, e_m \rangle$ $\mathbf{f} = \langle f_1, f_2, \dots, f_n \rangle$

Lexical Translation

- Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$
- \bullet where eand fare complete English and Foreign sentences
- Lexical translation makes the following **assumptions**:
 - Each word in $\mathit{e}_{i\!\!\!\!/}$ n <code>Eis generated from exactly one word in f</code>
 - Thus, we have an *alignment* athat indicates which word e_i "came from", specifically it came from f_{a_i}
 - Given the alignments A translation decisions are conditionally independent of each other and depend only on the aligned source word f_{a_i}

- Simplest possible lexical translation model
- Additional assumptions
 - The *m* alignment decisions are independent
 - The alignment distribution for each a_i is uniform over all source words and NULL

for each
$$i \in [1, 2, ..., m]$$

 $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$
 $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

IBM Model I
for each
$$i \in [1, 2, ..., m]$$

 $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$
 $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m}$$

for each
$$i \in [1, 2, ..., m]$$

 $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$
 $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n}$$

for each
$$i \in [1, 2, ..., m]$$

 $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$
 $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

for each
$$i \in [1, 2, ..., m]$$

 $a_i \sim \text{Uniform}(0, 1, 2, ..., n)$
 $e_i \sim \text{Categorical}(\boldsymbol{\theta}_{f_{a_i}})$

$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} \frac{1}{1+n} p(e_i \mid f_{a_i})$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$
$$p(\mathbf{e}, \mathbf{a} \mid \mathbf{f}, m) = \prod_{i=1}^{m} p(e_i, a_i \mid \mathbf{f}, m)$$

$$p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$$
$$p(e_i \mid \mathbf{f}, m) = \sum_{a_i=0}^n \frac{1}{1+n} p(e_i \mid f_{a_i})$$

Recall our independence assumption: all alignment decisions are independent of each other, and given alignments all translation decisions are independent of each other, so **all translation decisions are independent of each other**.

$$p(a, b, c, d) = p(a)p(b)p(c)p(d)$$
$$p(\mathbf{e} \mid \mathbf{f}, m) = \prod_{i=1}^{m} p(e_i \mid \mathbf{f}, m)$$

 $p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$ $p(e_i \mid \mathbf{f}, m) = \sum_{m=0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$ $p(\mathbf{e} \mid \mathbf{f}, m) = \prod p(e_i \mid \mathbf{f}, m)$ i=1 $=\prod_{i=1}^{n}\sum_{a_i=0}^{n}\frac{1}{1+n}p(e_i \mid f_{a_i})$

 $p(e_i, a_i \mid \mathbf{f}, m) = \frac{1}{1+n} p(e_i \mid f_{a_i})$ $p(e_i \mid \mathbf{f}, m) = \sum_{\alpha_i = 0}^{n} \frac{1}{1+n} p(e_i \mid f_{a_i})$ $p(\mathbf{e} \mid \mathbf{f}, m) = \prod p(e_i \mid \mathbf{f}, m)$ $=\prod_{i=1}^{m}\sum_{a_i=0}^{m}\frac{1}{1+n}p(e_i \mid f_{a_i})$ $= \frac{1}{(1+n)^m} \prod_{i=1}^m \sum_{a_i=0}^n p(e_i \mid f_{a_i})$

Start with a foreign sentence and a target length.

Example

das Haus the house				
e	f	initial		
\mathbf{the}	das	0.25		
book	das	0.25		
house	das	0.25		
the	buch	0.25		
book	buch	0.25		
a	buch	0.25		
book	ein	0.25		
a	ein	0.25		
the	haus	0.25		
house	haus	0.25		

freq(Buch, book) =?
freq(das, book) =?
freq(ein, book) =?

$$\begin{aligned} &\textit{freq}(\mathsf{Buch},\mathsf{book}) = \\ &\sum_{i} \mathbb{I}(\tilde{e}_i = \mathsf{book}, \tilde{f}_{a_i} = \mathsf{Buch}) \end{aligned}$$

$$\mathbb{E}_{p_{\mathbf{w}^{(1)}}(\mathbf{a}|\mathbf{f}=\mathsf{das}\;\mathsf{Buch},\mathbf{e}=\mathsf{the}\;\mathsf{book})}\sum_{i}\mathbb{I}[e_i=\mathsf{book},f_{a_i}=\mathsf{Buch}]$$

Convergence

e	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

Evaluation

Since we have a probabilistic model, we can evaluate perplexity.

$$PPL = 2^{-\frac{1}{\sum_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} |\mathbf{e}|} \log \prod_{(\mathbf{e}, \mathbf{f}) \in \mathcal{D}} p(\mathbf{e}|\mathbf{f})}$$

	lter l	lter 2	lter 3	lter 4	•••	lter ∞
-log likelihood	-	7.66	7.21	6.84	•••	-6
perplexity	-	2.42	2.3	2.21	•••	2

Hidden Markov Models

- GMMs, the aggregate bigram model, and Model I don't have conditional dependencies between random variables
- Let's consider an example of a model where this is not the case

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{y}' \in \mathcal{Y}_{\boldsymbol{x}}} \eta(y_{|\boldsymbol{x}|} \to \text{STOP}) \prod_{i=1}^{|\boldsymbol{x}|} \eta(y_{i-1} \to y_i) \times \gamma(y_i \downarrow x_i)$$

EM for HMMs

 What statistics are sufficient to determine the parameter values?

 $\begin{array}{ll} \mathit{freq}(q \downarrow x) & \text{How often does } q \text{ emit } x? \\ \mathit{freq}(q \rightarrow r) & \text{How often does } q \text{ transition to } r? \\ \textit{freq}(q) & \text{How often do we visit } q? \end{array}$

And of course...

$$freq(q) = \sum_{r \in \mathcal{Q}} freq(q \to r)$$

$$p(y_{2} = q, y_{3} = r \mid \boldsymbol{x}) \propto p(y_{2} = q, y_{3} = r, \boldsymbol{x})$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{\sum_{q', r' \in \mathcal{Q}} \alpha_{2}(q') \times \beta_{3}(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_{3})}$$

$$= \frac{\alpha_{2}(q) \times \beta_{3}(r) \times \eta(q \to r) \times \eta(r \downarrow x_{3})}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$

$$p(y_2 = q, y_3 = r \mid \boldsymbol{x}) \propto p(y_2 = q, y_3 = r, \boldsymbol{x})$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{\sum_{q', r' \in \mathcal{Q}} \alpha_2(q') \times \beta_3(r') \times \eta(q' \to r') \times \eta(r' \downarrow x_3)}$$

$$= \frac{\alpha_2(q) \times \beta_3(r) \times \eta(q \to r) \times \eta(r \downarrow x_3)}{p(\boldsymbol{x}) = \alpha_{|\boldsymbol{x}|}(\text{STOP})}$$

The expectation over the full structure is then

$$\mathbb{E}[freq(q \to r)] = \sum_{i=1}^{|\boldsymbol{x}|} p(y_i = q, y_{i+1} = r \mid \boldsymbol{x})$$

The expectation over state occupancy is

$$\mathbb{E}[freq(q)] = \sum_{r \in \mathcal{Q}} \mathbb{E}[freq(q \to r)]$$

What is $\mathbb{E}[freq(q \downarrow x)]$?

Random Restarts

- Non-convex optimization only finds a local solution
- Several strategies
 - Random restarts
 - Simulated annealing

Decipherment

Grammar Induction

Inductive Bias

- A model can learn nothing without inductive bias ... whence inductive bias?
 - Model structure
 - Priors (next week)
 - Posterior regularization (Google it)
- Features provide a very flexible means to bias a model

EM with Features

• Let's replace the multinomials with log linear distributions

$$egin{aligned} \eta(q
ightarrow r) &= heta_{q,r} \ &= rac{\exp \mathbf{w}^{ op} oldsymbol{f}(q,r)}{\sum_{q' \in \mathcal{Q}} \exp \mathbf{w}^{ op} oldsymbol{f}(q',r)} \end{aligned}$$

How will the likelihood of this model compare to the likelihood of the previous model?

Learning Algorithm I

• E step

- given model parameters, compute posterior distribution over transitions (states, etc)
- compute $\mathbb{E}_{q(\boldsymbol{y})} \sum \boldsymbol{f}(q,r)$
- These are your " $e^{q,r}$ mpirical" expectations

Learning Algorithm I

- M step
 - The gradient of the expected log likelihood of **x**,**y** under q(**y**) is

$$\nabla \mathbb{E}_{q(\boldsymbol{y})} \log p(\boldsymbol{x}, \boldsymbol{y}) = \mathbb{E}_{q} \sum_{q, r} \boldsymbol{f}(q, r) - \sum_{q, r} \mathbb{E}_{q} [freq(q)] \mathbb{E}_{p(r|q; \boldsymbol{w})} \boldsymbol{f}(q, r)$$

• Use LBFGS or gradient descent to solve