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The EM Algorithm
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What Do We Need?
• Start with the M step

• What values do we need? These are called sufficient 
statistics. They depend on your model.

• In an HMM, we need to know the number of times

• You are in state s

• You transition from state s to state t

• You emit symbol x from state s



Helpful Recipe

• Think about the complete-data likelihood

• What are the various quantities you need to 
compute the MLE?

• Replace these quantities with their 
expected values under the q distribution

• Run MLE as normal

• Repeat



Why Does EM Work?
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Theorem. At every step of the above algorithm 
the M step will find an          such that

�ML(w
(t+1)) � �(w(t))



Proof. We define the following quantity.

Q(t)(w) =
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q(t)i (y) log pw(t)(x̃i,y)

q(t)i (y) = pw(i)(y | x̃i)where

Consider the difference between the likelihood  
objective         and Q(t)(w)�(w)
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ÑX

i=1

X

y2Y
q(t)i (y) log

pw(x̃i,y)P
y02Yx̃i

pw(x̃i,y0)

= �
ÑX
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Recall that the M step does the following:

w(t+1) = argmax
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Q(t)(w)
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ÑX

i=1

X

y2Y
q(t)i (y) log pw(y | x̃i)

�(w) = Q(t)(w)�
ÑX
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In the structured case

• Let us assume the latent variables (and 
probably the observations) are structured

• EM works just the same as always

•

p(y | x;✓(t)) =
p(x,y;✓(t))

P
y2Yx

p(x,y;✓(t))



Aggregate Bigram Model

• Process

• Let      = <s>

• Let i = 0

• While         </s> repeat:

•  

• Sample a class      from

• Sample a word      from

x0

i i+ 1

yi

xi

xi 6=

p(Y = yi|X = xi�1)

p(X = xi|Y = yi)

Saul & Pereira. (1997). “Word Classes”



Aggregate Bigram Model
The parameters of the model are:

The probability of every word in the 
vocabulary following every class.  

The probability of every class following 
every word in the vocabulary.

How many are there in total?

|�| = |V |�K � 2

a(x|y) =

b(y|x) =

� = ha, bi
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Aggregate Bigram Model

<s>

1



Aggregate Bigram Model

<s> C1

b(C1|�s⇥)

1



Aggregate Bigram Model

<s> JohnC1

b(C1|�s⇥)

a(John|C1)1



Aggregate Bigram Model
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Aggregate Bigram Model
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Aggregate Bigram Model

<s> John leftC1 C4 C3

b(C1|�s⇥)

a(John|C1)
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Aggregate Bigram Model

<s> John left </s>C1 C4 C3

b(C1|�s⇥)

a(John|C1)

b(C4|John)

a(left|C4)

b(C3|left)

a(�/s⇥|C3)1



• How do we learn parameters?

• We have a joint probability model

• We have some observable data (the 
words)

• We have some hidden data (the classes)  

Aggregate Bigram Model



• How do we learn parameters?

• We have a joint probability model

• We have some observable data (the 
words)

• We have some hidden data (the classes)  

Aggregate Bigram Model

EM



Aggregate Bigram Model

<s> John left </s>?? ?? ??



Aggregate Bigram Model

<s> John??



Aggregate Bigram Model

xi-1 xiyi



Aggregate Bigram Model

xi-1 xiyi

b(yi|xi�1)



Aggregate Bigram Model

xi-1 xiyi

b(yi|xi�1) �a(xi|yi)



Aggregate Bigram Model

xi-1 xiyi

b(yi|xi�1) �a(xi|yi)

p(yi|xi�1, xi) =
b(yi|xi�1)� a(xi|yi)PK

y0=1 b(y
0|xi�1)� a(xi|y0)



Example

• Let’s treat the letters in English words as 
the “words” in our language

• Output: clustering over letters

• For this example, we assume K=2



Likelihood

c1$Iteration

c1
$L
LH

-104000

-102000

-100000

-98000

-96000

10 20 30 40



<s> F U N </s>2 12 1

</s> 0.23
E 0.19
A 0.11
I 0.11

O 0.09
T 0.04
U 0.04

H 0.04
S 0.03
L 0.03

N 0.23
S 0.19
R 0.11
T 0.11

C 0.09
D 0.04
L 0.04

G 0.04
M 0.03
P 0.03

What was learned?
a(X = · | Y = 2)a(X = · | Y = 1)



Word Alignment

das Haus

the bookthe house

ein Buch das Buch

a book



Lexical Translation
• Goal: a model

• where    and    are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in     in    is generated from exactly one word 
in

• Thus, we have an alignment     that indicates which word 
     “came from”, specifically it came from       .

• Given the alignments    , translation decisions are 
conditionally independent of each other and depend only 
on the aligned source word    .

p(e | f,m)

e f

eei
f

ai
ei fai

a

e = he1, e2, . . . , emi f = hf1, f2, . . . , fni



Lexical Translation
• Goal: a model

• where    and    are complete English and Foreign sentences

• Lexical translation makes the following assumptions:

• Each word in     in    is generated from exactly one word 
in
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IBM Model 1
• Simplest possible lexical translation model

• Additional assumptions

• The m alignment decisions are independent

• The alignment distribution for each    is uniform 
over all source words and NULL

ai

for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)
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IBM Model 1
for each i 2 [1, 2, . . . ,m]

ai ⇠ Uniform(0, 1, 2, . . . , n)

ei ⇠ Categorical(✓fai
)

mY
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1

1 + n
p(ei | fai)p(e,a | f,m) =
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1
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mY
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p(ei, ai | f,m)



Marginal probability
p(ei, ai | f,m) =

1

1 + n
p(ei | fai)

p(ei | f,m) =
nX

ai=0

1

1 + n
p(ei | fai)

Recall our independence assumption: all alignment decisions are 
independent of each other, and given alignments all translation 
decisions are independent of each other, so all translation 
decisions are independent of each other.

p(a, b, c, d) = p(a)p(b)p(c)p(d)
p(e | f,m) =

mY

i=1

p(ei | f,m)



Marginal probability
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Example

das Haus ist klein
1 2 3 4

1 2 43

NULL
0

Start with a foreign sentence and a target length.



Example

das Haus ist klein

the house

1 2 3 4

1 2 4
is small
3

NULL
0



Example

das Haus ist klein

thehouse

1 2 3 4

1 2 4
is small

3

NULL
0



freq(Buch, book) =?

freq(das, book) =?

freq(ein, book) =?

Ep
w(1) (a|f=das Buch,e=the book)

X

i

I[ei = book, fai = Buch]

freq(Buch, book) =
X

i

I(ẽi = book, f̃ai = Buch)



Convergence



Evaluation

• Since we have a probabilistic model, we can 
evaluate perplexity.

PPL = 2
� 1P

(e,f)2D |e| log
Q

(e,f)2D p(e|f)

Iter 1 Iter 2 Iter 3 Iter 4 ... Iter ∞

-log likelihood - 7.66 7.21 6.84 ... -6

perplexity - 2.42 2.3 2.21 ... 2



Hidden Markov Models
• GMMs, the aggregate bigram model, and 

Model 1 don’t have conditional 
dependencies between random variables

• Let’s consider an example of a model 
where this is not the case

p(x) =
X

y02Yx

⌘(y|x| ! stop)

|x|Y

i=1

⌘(yi�1 ! yi)⇥ �(yi # xi)



EM for HMMs

• What statistics are sufficient to determine 
the parameter values?

freq(q # x) How often does q emit x?

freq(q ! r) How often does q transition to r?

freq(q) How often do we visit q?

freq(q) =
X

r2Q
freq(q ! r)

And of course...



p(y2 = q, y3 = r | x) / p(y2 = q, y3 = r,x)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)P

q0,r02Q ↵2(q0)⇥ �3(r0)⇥ ⌘(q0 ! r0)⇥ ⌘(r0 # x3)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)

p(x) = ↵|x|(stop)

a b b b c 

↵2(s2) �3(s2)

i=1$ i=2$ i=3$ i=4$ i=5$



p(y2 = q, y3 = r | x) / p(y2 = q, y3 = r,x)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)P

q0,r02Q ↵2(q0)⇥ �3(r0)⇥ ⌘(q0 ! r0)⇥ ⌘(r0 # x3)

=
↵2(q)⇥ �3(r)⇥ ⌘(q ! r)⇥ ⌘(r # x3)

p(x) = ↵|x|(stop)

E[freq(q ! r)] =

|x|X

i=1

p(yi = q, yi+1 = r | x)

The expectation over the full structure is then

The expectation over state occupancy is

E[freq(q)] =
X

r2Q
E[freq(q ! r)]

What is                   ? E[freq(q # x)]



Random Restarts

• Non-convex optimization only finds a local 
solution

• Several strategies

• Random restarts

• Simulated annealing



Decipherment



Grammar Induction



Inductive Bias

• A model can learn nothing without 
inductive bias ... whence inductive bias?

• Model structure

• Priors (next week)

• Posterior regularization (Google it)

• Features provide a very flexible means to 
bias a model



EM with Features

• Let’s replace the multinomials with log 
linear distributions

⌘(q ! r) = ✓q,r

=
expw>f(q, r)P

q02Q expw>f(q0, r)

How will the likelihood of this model compare  
to the likelihood of the previous model?



Learning Algorithm I

• E step

• given model parameters, compute 
posterior distribution over transitions 
(states, etc)

• compute

• These are your “empirical” expectations

Eq(y)

X

q,r

f(q, r)



Learning Algorithm 1

• M step

• The gradient of the expected log 
likelihood of x,y under q(y) is

• Use LBFGS or gradient descent to solve

rEq(y) log p(x,y) = Eq

X

q,r

f(q, r)�
X

q,r

Eq[freq(q)]Ep(r|q;w)f(q, r)


