
Basic HMM for POS Induction

xi xi+1xi�1

zi�1 zi+1zi

Transition distribution:

P (z0|z)
Emission distribution:

P (x|z)

Parameterization

Key distribution: P (x|NNP)

0.1

0

0.2

0

✓x|NNP

John

Mary

running

jumping

x
+Cap

+Cap

+ing

+ing

f
0.3

0.3

0.1

0.1

ew
Tf

w:
+Cap +2

+ing -1

Parameterization

w ✓

�x|z =
exp(wTf(x, z))P
x0 exp(wTf(x�, z))

Unsupervised Learning with Features

• Main idea:
Local multinomials become maxents

• EM + Maxent M-Step =
Unsupervised Learning w/ features

POS Induction Accuracy

56.0

43.2

Basic Multinomial: Rich Features:

+12.8

John ^ NNP John ^ NNP
+Cap ^ NNP
+Digit ^ NNP

+Hyphen ^ NNP

+ing ^ NNP

1-to-1 Accuracy

Basic Hard EM

E-Step

M-Step

✓ z

Basic Hard EM

Dynamic Program

Divide Counts

✓ z M-Step: Divide Counts

=

c(z � x)
c(z � ·) , ...

�
✓ argmax

✓
P (x, z;✓)

E-Step: Dynamic Program

z� argmax
z

P (z|x;✓)

Hard EM with Features

Dynamic Program

Divide Counts

✓

z
w

Transform

E-Step: Dynamic Program

z� argmax
z

P (z|x;✓)

M-Step: Divide Counts

=

c(z � x)
c(z � ·) , ...

�
✓ argmax

✓
P (x, z;✓)

Hard EM with Features

Dynamic Program

Divide Counts

✓

z
w

Transform

E-Step: Dynamic Program

z� argmax
z

P (z|x;✓)

M-Step: Train Maxent

w argmax
w

log P (x, z;w)
M-Step: Divide Counts

=

c(z � x)
c(z � ·) , ...

�
✓ argmax

✓
P (x, z;✓)

Train Maxent

Hard EM with Features

log P (x, z;w)

log P (x|z;w)=
X

z,x

c(z ! x) + ...

=
X

i

log P (xi|zi;w) + ...

Maxent training example

Multiplicity

Hard EM with Features

Dynamic Program

✓

z
w

Transform

E-Step: Dynamic Program

z� argmax
z

P (z|x;✓)

Transform parameters

�x|z
exp(wT f(x, z))P
x0 exp(wT f(x�, z))

M-Step: Train Maxent

w argmax
w

log P (x, z;w)

Train Maxent

EM with Features

Dynamic Program

✓

z
w

Transform

E-Step: Dynamic Program

z� argmax
z

P (z|x;✓)

Transform parameters

�x|z
exp(wT f(x, z))P
x0 exp(wT f(x�, z))

M-Step: Train Maxent

w argmax
w

log P (x, z;w)

e(z ! x) E
⇥
c(z ! x)

⇤

w argmax
w

E
⇥
log P (x, z;w)

⇤

Train Maxent

Basic EM

EM
Algorithm 1 EM with Features

Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Basic EM

L(w)

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Basic EM

L(w)

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Basic EM

L(w)

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Basic EM

L(w)

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Basic EM

L(w)

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Basic EM

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

EM

EM with Features

EM

Algorithm 1 EM with Features
Initialize probabilities ✓
repeat

Compute expected counts e
Fit parameters ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 3 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 4 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

EM with Features

EM

Fi
t

Pa
ra

m
s

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

EM with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

Direct Gradient with Features

EM w/ Features DG w/ Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

Direct Gradient with Features

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

Algorithm 1 EM with Features
Initialize weights w
repeat

Compute expected counts e
Fit parameters w
Transform w to ✓

until convergence

Algorithm 2 EM with Features
Initialize weights w
repeat

Compute expected counts e
repeat

Compute �(w, e)
Compute r�(w, e)
w climb(w, �(w, e),O�(w, e))

until convergence
Transform w to ✓

until convergence

Algorithm 3 Direct Gradient with Features
Initialize weights w
repeat

Compute expected counts e
Compute L(w)
Compute O�(w, e)
w climb(w, L(w),O�(w, e))
Transform w to ✓

until convergence

L(w)

POS Induction Results

The

DT JJ NN VBZ

sleepscatgreen

IN NN

at home.

Features:

parameter space. However, e stays fixed throughout
the M-step. Algorithm 1 outlines EM in its entirety.
The subroutine climb(·, ·, ·) represents a generic op-
timization step such as an LBFGS iteration.

Algorithm 1 Feature-enhanced EM
repeat

Compute expected counts e ⇤ Eq. 2
repeat

Compute ⇤(w, e) ⇤ Eq. 3
Compute⇤⇤(w, e) ⇤ Eq. 4
w⇥ climb(w, ⇤(w, e),⇤⇤(w, e))

until convergence
until convergence

3.2 Direct Marginal Likelihood Optimization
Another approach to optimizing Equation 1 is to
compute the gradient of the log marginal likelihood
directly (Salakhutdinov et al., 2003). The gradient
turns out to have the same form as Equation 4, with
the key difference that ed,c,t is recomputed for every
different value of w. Algorithm 2 outlines the proce-
dure. Justification for this algorithm appears in the
Appendix.

Algorithm 2 Feature-enhanced direct gradient
repeat

Compute expected counts e ⇤ Eq. 2
Compute L(w) ⇤ Eq. 1
Compute ⇤⇤(w, e) ⇤ Eq. 4
w⇥ climb(w, L(w),⇤⇤(w, e))

until convergence

In practice, we find that this optimization ap-
proach leads to higher task accuracy for several
models. However, in cases where computing ed,c,t

is expensive, EM can be a more efficient alternative.

4 Part-of-Speech Induction

We now describe experiments that demonstrate the
effectiveness of locally normalized logistic models.
We first use the bigram HMM described in Sec-
tion 2.1 for POS induction, which has two types of
multinomials. For type EMIT, the decisions d are
words and contexts c are tags. For type TRANS, the
decisions and contexts are both tags.

4.1 POS Induction Features
We use the same set of features used by Haghighi
and Klein (2006) in their baseline globally normal-
ized Markov random field (MRF) model. These are
all coarse features on emission contexts that activate
for words with certain orthographic properties. We
use only the BASIC features for transitions. For
an emission with word y and tag z, we use the
following feature templates:

BASIC: (y = ·, z = ·)
CONTAINS-DIGIT: Check if y contains digit and conjoin

with z:
(containsDigit(y) = ·, z = ·)

CONTAINS-HYPHEN: (containsHyphen(x) = ·, z = ·)
INITIAL-CAP: Check if the first letter of y is

capitalized: (isCap(y) = ·, z = ·)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

4.2 POS Induction Data and Evaluation
We train and test on the entire WSJ tag corpus (Mar-
cus et al., 1993). We attempt the most difficult ver-
sion of this task where the only information our sys-
tem can make use of is the unlabeled text itself. In
particular, we do not make use of a tagging dictio-
nary. We use 45 tag clusters, the number of POS tags
that appear in the WSJ corpus. There is an identifi-
ability issue when evaluating inferred tags. In or-
der to measure accuracy on the hand-labeled corpus,
we map each cluster to the tag that gives the highest
accuracy, the many-1 evaluation approach (Johnson,
2007). We run all POS induction models for 1000
iterations, with 10 random initializations. The mean
and standard deviation of many-1 accuracy appears
in Table 1.

4.3 POS Induction Results
We compare our model to the basic HMM and a bi-
gram version of the feature-enhanced MRF model of
Haghighi and Klein (2006). Using EM, we achieve
a many-1 accuracy of 68.1. This outperforms the
basic HMM baseline by a 5.0 margin. The same
model, trained using the direct gradient approach,
achieves a many-1 accuracy of 75.5, outperforming
the basic HMM baseline by a margin of 12.4. These
results show that the direct gradient approach can of-
fer additional boosts in performance when used with
a feature-enhanced model. We also outperform the

75.5
68.1

63.1

POS Induction Results

HMM
EM

Many-to-1 Accuracy

HMM Features
Gradient

HMM Features
EM

The
DT JJ NN VBZ

sleepscatgreen
IN NN
at home.

+5.0
+12.4

Features:

parameter space. However, e stays fixed throughout
the M-step. Algorithm 1 outlines EM in its entirety.
The subroutine climb(·, ·, ·) represents a generic op-
timization step such as an LBFGS iteration.

Algorithm 1 Feature-enhanced EM
repeat

Compute expected counts e ⇤ Eq. 2
repeat

Compute ⇤(w, e) ⇤ Eq. 3
Compute⇤⇤(w, e) ⇤ Eq. 4
w⇥ climb(w, ⇤(w, e),⇤⇤(w, e))

until convergence
until convergence

3.2 Direct Marginal Likelihood Optimization
Another approach to optimizing Equation 1 is to
compute the gradient of the log marginal likelihood
directly (Salakhutdinov et al., 2003). The gradient
turns out to have the same form as Equation 4, with
the key difference that ed,c,t is recomputed for every
different value of w. Algorithm 2 outlines the proce-
dure. Justification for this algorithm appears in the
Appendix.

Algorithm 2 Feature-enhanced direct gradient
repeat

Compute expected counts e ⇤ Eq. 2
Compute L(w) ⇤ Eq. 1
Compute ⇤⇤(w, e) ⇤ Eq. 4
w⇥ climb(w, L(w),⇤⇤(w, e))

until convergence

In practice, we find that this optimization ap-
proach leads to higher task accuracy for several
models. However, in cases where computing ed,c,t

is expensive, EM can be a more efficient alternative.

4 Part-of-Speech Induction

We now describe experiments that demonstrate the
effectiveness of locally normalized logistic models.
We first use the bigram HMM described in Sec-
tion 2.1 for POS induction, which has two types of
multinomials. For type EMIT, the decisions d are
words and contexts c are tags. For type TRANS, the
decisions and contexts are both tags.

4.1 POS Induction Features
We use the same set of features used by Haghighi
and Klein (2006) in their baseline globally normal-
ized Markov random field (MRF) model. These are
all coarse features on emission contexts that activate
for words with certain orthographic properties. We
use only the BASIC features for transitions. For
an emission with word y and tag z, we use the
following feature templates:

BASIC: (y = ·, z = ·)
CONTAINS-DIGIT: Check if y contains digit and conjoin

with z:
(containsDigit(y) = ·, z = ·)

CONTAINS-HYPHEN: (containsHyphen(x) = ·, z = ·)
INITIAL-CAP: Check if the first letter of y is

capitalized: (isCap(y) = ·, z = ·)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

4.2 POS Induction Data and Evaluation
We train and test on the entire WSJ tag corpus (Mar-
cus et al., 1993). We attempt the most difficult ver-
sion of this task where the only information our sys-
tem can make use of is the unlabeled text itself. In
particular, we do not make use of a tagging dictio-
nary. We use 45 tag clusters, the number of POS tags
that appear in the WSJ corpus. There is an identifi-
ability issue when evaluating inferred tags. In or-
der to measure accuracy on the hand-labeled corpus,
we map each cluster to the tag that gives the highest
accuracy, the many-1 evaluation approach (Johnson,
2007). We run all POS induction models for 1000
iterations, with 10 random initializations. The mean
and standard deviation of many-1 accuracy appears
in Table 1.

4.3 POS Induction Results
We compare our model to the basic HMM and a bi-
gram version of the feature-enhanced MRF model of
Haghighi and Klein (2006). Using EM, we achieve
a many-1 accuracy of 68.1. This outperforms the
basic HMM baseline by a 5.0 margin. The same
model, trained using the direct gradient approach,
achieves a many-1 accuracy of 75.5, outperforming
the basic HMM baseline by a margin of 12.4. These
results show that the direct gradient approach can of-
fer additional boosts in performance when used with
a feature-enhanced model. We also outperform the

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

POS Induction Results

The
DT JJ NN VBZ

sleepscatgreen
IN NN
at home.

Features:

parameter space. However, e stays fixed throughout
the M-step. Algorithm 1 outlines EM in its entirety.
The subroutine climb(·, ·, ·) represents a generic op-
timization step such as an LBFGS iteration.

Algorithm 1 Feature-enhanced EM
repeat

Compute expected counts e ⇤ Eq. 2
repeat

Compute ⇤(w, e) ⇤ Eq. 3
Compute⇤⇤(w, e) ⇤ Eq. 4
w⇥ climb(w, ⇤(w, e),⇤⇤(w, e))

until convergence
until convergence

3.2 Direct Marginal Likelihood Optimization
Another approach to optimizing Equation 1 is to
compute the gradient of the log marginal likelihood
directly (Salakhutdinov et al., 2003). The gradient
turns out to have the same form as Equation 4, with
the key difference that ed,c,t is recomputed for every
different value of w. Algorithm 2 outlines the proce-
dure. Justification for this algorithm appears in the
Appendix.

Algorithm 2 Feature-enhanced direct gradient
repeat

Compute expected counts e ⇤ Eq. 2
Compute L(w) ⇤ Eq. 1
Compute ⇤⇤(w, e) ⇤ Eq. 4
w⇥ climb(w, L(w),⇤⇤(w, e))

until convergence

In practice, we find that this optimization ap-
proach leads to higher task accuracy for several
models. However, in cases where computing ed,c,t

is expensive, EM can be a more efficient alternative.

4 Part-of-Speech Induction

We now describe experiments that demonstrate the
effectiveness of locally normalized logistic models.
We first use the bigram HMM described in Sec-
tion 2.1 for POS induction, which has two types of
multinomials. For type EMIT, the decisions d are
words and contexts c are tags. For type TRANS, the
decisions and contexts are both tags.

4.1 POS Induction Features
We use the same set of features used by Haghighi
and Klein (2006) in their baseline globally normal-
ized Markov random field (MRF) model. These are
all coarse features on emission contexts that activate
for words with certain orthographic properties. We
use only the BASIC features for transitions. For
an emission with word y and tag z, we use the
following feature templates:

BASIC: (y = ·, z = ·)
CONTAINS-DIGIT: Check if y contains digit and conjoin

with z:
(containsDigit(y) = ·, z = ·)

CONTAINS-HYPHEN: (containsHyphen(x) = ·, z = ·)
INITIAL-CAP: Check if the first letter of y is

capitalized: (isCap(y) = ·, z = ·)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

4.2 POS Induction Data and Evaluation
We train and test on the entire WSJ tag corpus (Mar-
cus et al., 1993). We attempt the most difficult ver-
sion of this task where the only information our sys-
tem can make use of is the unlabeled text itself. In
particular, we do not make use of a tagging dictio-
nary. We use 45 tag clusters, the number of POS tags
that appear in the WSJ corpus. There is an identifi-
ability issue when evaluating inferred tags. In or-
der to measure accuracy on the hand-labeled corpus,
we map each cluster to the tag that gives the highest
accuracy, the many-1 evaluation approach (Johnson,
2007). We run all POS induction models for 1000
iterations, with 10 random initializations. The mean
and standard deviation of many-1 accuracy appears
in Table 1.

4.3 POS Induction Results
We compare our model to the basic HMM and a bi-
gram version of the feature-enhanced MRF model of
Haghighi and Klein (2006). Using EM, we achieve
a many-1 accuracy of 68.1. This outperforms the
basic HMM baseline by a 5.0 margin. The same
model, trained using the direct gradient approach,
achieves a many-1 accuracy of 75.5, outperforming
the basic HMM baseline by a margin of 12.4. These
results show that the direct gradient approach can of-
fer additional boosts in performance when used with
a feature-enhanced model. We also outperform the

Train and test on entire WSJ

Data:

No tagging dictionary

45 POS tags

56
48.3

43.2

+5.1

HMM
EM

HMM Features
Gradient

HMM Features
EM

+12.8

1-to-1 Accuracy

0

20

40

60

Grammar Induction Results

Features:

0

20

40

60

DMV
EM

Chinese Directed Accuracy

DMV Features
LBFGS

Cohen and
Smith ’09
SLN DMV

DMV Features
EM

The sleepscatgreen at home.

English Directed Accuracy

+0.5

+15.2

+7.4 +11.1

WSJ10 Sec. 2-21
CTB10 Sec. 1-270

Train

Test

Data:
globally normalized MRF, which uses the same set
of features and which we train using a direct gradi-
ent approach.

To the best of our knowledge, our system achieves
the best performance to date on the WSJ corpus for
totally unsupervised POS tagging.3

5 Grammar Induction

We next apply our technique to a grammar induction
task: the unsupervised learning of dependency parse
trees via the dependency model with valence (DMV)
(Klein and Manning, 2004). A dependency parse is
a directed tree over tokens in a sentence. Each edge
of the tree specifies a directed dependency from a
head token to a dependent, or argument token. Thus,
the number of dependencies in a parse is exactly the
number of tokens in the sentence, not counting the
artificial root token.

5.1 Dependency Model with Valence

The DMV defines a probability distribution over de-
pendency parse trees. In this head-outward attach-
ment model, a parse and the word tokens are derived
together through a recursive generative process. For
each token generated so far, starting with the root, a
set of left dependents is generated, followed by a set
of right dependents.

There are two types of multinomial distributions
in this model. The Bernoulli STOP probabilities
⇥d,c,STOP capture the valence of a particular head. For
this type, the decision d is whether or not to stop
generating arguments, and the context c contains the
current head h, direction � and adjacency adj. If
a head’s stop probability is high, it will be encour-
aged to accept few arguments. The ATTACH multi-
nomial probability distributions ⇥d,c,ATTACH capture
attachment preferences of heads. For this type, a de-
cision d is an argument token a, and the context c
consists of a head h and a direction �.

We take the same approach as previous work
(Klein and Manning, 2004; Cohen and Smith, 2009)
and use gold POS tags in place of words.

3Haghighi and Klein (2006) achieve higher accuracies by
making use of labeled prototypes. We do not use any external
information.

5.2 Grammar Induction Features
One way to inject knowledge into a dependency
model is to encode the similarity between the vari-
ous morphological variants of nouns and verbs. We
encode this similarity by incorporating features into
both the STOP and the ATTACH probabilities. The
attachment features appear below; the stop feature
templates are similar and are therefore omitted.

BASIC: (a = ·, h = ·, � = ·)
NOUN: Generalize the morphological variants of

nouns by using isNoun(·):
(a = ·, isNoun(h) = ·, � = ·)
(isNoun(a) = ·, h = ·, � = ·)
(isNoun(a) = ·, isNoun(h) = ·, � = ·)

VERB: Same as above, generalizing verbs instead
of nouns by using isVerb(·)

NOUN-VERB: Same as above, generalizing with
isVerbOrNoun(·) = isVerb(·)⇥ isNoun(·)

BACK-OFF: We add versions of all other features that
ignore direction or adjacency.

While the model has the expressive power to al-
low specific morphological variants to have their
own behaviors, the existence of coarse features en-
courages uniform analyses, which in turn gives bet-
ter accuracies.

Cohen and Smith’s (2009) method has similar
characteristics. They add a shared logistic-normal
prior (SLN) to the DMV in order to tie multinomial
parameters across related derivation events. They
achieve their best results by only tying parame-
ters between different multinomials when the cor-
responding contexts are headed by nouns and verbs.
This observation motivates the features we choose to
incorporate into the DMV.

5.3 Grammar Induction Data and Evaluation
For our English experiments we train and report di-
rected attachment accuracy on portions of the WSJ
corpus. We work with a standard, reduced version of
WSJ, WSJ10, that contains only sentences of length
10 or less after punctuation has been removed. We
train on sections 2-21, and use section 22 as a de-
velopment set. We report accuracy on section 23.
These are the same training, development, and test
sets used by Cohen and Smith (2009). The regular-
ization parameter (⇤) is tuned on the development
set to maximize accuracy.

For our Chinese experiments, we use the same
corpus and training/test split as Cohen and Smith

Tune WSJ10 Sec. 22
CTB10 Sec. 400-454

WSJ10 Sec. 23
CTB10 Sec. 271-300

Word Alignment Results

0

10

20

30

40

50

Model 1
EM

AER

HMM
EM

HMM Features
EM

Model 1 Features
EM

The

El gato verde duerme

sleepscatgreen

en casa.

at home.

-2.4

-3.8

10K sentences of FIBIS
Ch-En newswire

Train

Test

Features:

Data:

day rely on unsupervised learning so that the models
may be applied easily to many language pairs. Our
approach provides efficient and consistent unsuper-
vised estimation for feature-rich alignment models.

6.2 Word Alignment Features
The BASIC features on pairs of lexical items
provide strong baseline performance. We add
coarse features to the model in order to inject
prior knowledge and tie together lexical items with
similar characteristics.

BASIC: (e = ·, y = ·)
EDIT-DISTANCE: (dist(y, e) = ·)
DICTIONARY: ((y, e) ⇥ D) for dictionary D.
STEM: (stem(e) = ·, y = ·) for Porter stemmer.
PREFIX: (prefix(e) = ·, y = ·) for prefixes of

length 4.
CHARACTER: (e = ·, charAt(y, i) = ·) for index i in

the Chinese word.

These features correspond to several common
augmentations of word alignment models, such as
adding dictionary priors and truncating long words,
but here we integrate them all coherently into a sin-
gle model.

6.3 Word Alignment Data and Evaluation
We evaluate on the standard hand-aligned portion
of the NIST 2002 Chinese-English development set
(Ayan et al., 2005). The set is annotated with sure S
and possible P alignments. We measure alignment
quality using alignment error rate (AER) (Och and
Ney, 2000).

We train the models on 10,000 sentences of FBIS
Chinese-English newswire. This is not a large-scale
experiment, but large enough to be relevant for low-
resource languages. LBFGS experiments are not
provided because computing expectations in these
models is too computationally intensive to run for
many iterations. Hence, EM training is a more ap-
propriate optimization approach: computing the M-
step gradient requires only summing over word type
pairs, while the marginal likelihood gradient needed
for LBFGS requires summing over training sentence
alignments. The final alignments, in both the base-
line and the feature-enhanced models, are computed
by training the generative models in both directions,
combining the result with hard union competitive
thresholding (DeNero and Klein, 2007), and us-

ing agreement training for the HMM (Liang et al.,
2006). The combination of these techniques yields
a state-of-the-art unsupervised baseline for Chinese-
English.

6.4 Word Alignment Results
For both IBM Model 1 and the HMM alignment
model, EM training with feature-enhanced models
outperforms the standard multinomial models, by
2.4 and 3.8 AER respectively.6 As expected, large
positive weights are assigned to both the dictionary
and edit distance features. Stem and character fea-
tures also contribute to the performance gain.

7 Word Segmentation

Finally, we show that it is possible to improve upon
the simple and effective word segmentation model
presented in Liang and Klein (2009) by adding
phonological features. Unsupervised word segmen-
tation is the task of identifying word boundaries in
sentences where spaces have been removed. For a
sequence of characters y = (y1, ..., yn), a segmen-
tation is a sequence of segments z = (z1, ..., z|z|)
such that z is a partition of y and each zi is a con-
tiguous subsequence of y. Unsupervised models for
this task infer word boundaries from corpora of sen-
tences of characters without ever seeing examples of
well-formed words.

7.1 Unigram Double-Exponential Model
Liang and Klein’s (2009) unigram double-
exponential model corresponds to a simple
derivational process where sentences of characters
x are generated a word at a time, drawn from a
multinomial over all possible strings �z,SEGMENT.
For this type, there is no context and the decision is
the particular string generated. In order to avoid the
degenerate MLE that assigns mass only to single
segment sentences it is helpful to independently
generate a length for each segment from a fixed
distribution. Liang and Klein (2009) constrain in-
dividual segments to have maximum length 10 and
generate lengths from the following distribution:
�l,LENGTH = exp(�l1.6) when 1 ⇥ l ⇥ 10. Their
model is deficient since it is possible to generate

6The best published results for this dataset are supervised,
and trained on 17 times more data (Haghighi et al., 2009).

NIST 2002 Ch-En dev set

Word Segmentation Results

0
10
20
30
40
50
60
70
80
90

100

Unigram
EM

Token F1

Unigram Features
LBFGS

Johnson and
Goldwater ’09

Adaptor
Grammar

Unigram Features
EM

[T h e][g r e e n][c a t]

+11.1+7.6

Features:

Data:

Train and test on phonetic version
of Bernstein-Ratner corpus

lengths that are inconsistent with the actual lengths
of the generated segments. The likelihood equation
is given by:

P (Y = y,Z = z) =

�STOP

|z|⇤

i=1

�
(1� �STOP) �zi,SEGMENT exp(�|zi|1.6)

⇥

7.2 Segmentation Data and Evaluation

We train and test on the phonetic version of the
Bernstein-Ratner corpus (1987). This is the same
set-up used by Liang and Klein (2009), Goldwater
et al. (2006), and Johnson and Goldwater (2009).
This corpus consists of 9790 child-directed utter-
ances transcribed using a phonetic representation.
We measure segment F1 score on the entire corpus.

We run all word segmentation models for 300 iter-
ations with 10 random initializations and report the
mean and standard deviation of F1 in Table 1.

7.3 Segmentation Features

The SEGMENT multinomial is the important distri-
bution in this model. We use the following features:

BASIC: (z = ·)
LENGTH: (length(z) = ·)
NUMBER-VOWELS: (numVowels(z) = ·)
PHONO-CLASS-PREF: (prefix(coarsePhonemes(z)) = ·)
PHONO-CLASS-PREF: (suffix(coarsePhonemes(z)) = ·)

The phonological class prefix and suffix features
project each phoneme of a string to a coarser class
and then take prefix and suffix indicators on the
string of projected characters. We include two ver-
sions of these features that use projections with dif-
ferent levels of coarseness. The goal of these fea-
tures is to help the model learn general phonetic
shapes that correspond to well-formed word bound-
aries.

As is the case in general for our method, the
feature-enhanced unigram model still respects the
conditional independence assumptions that the stan-
dard unigram model makes, and inference is still
performed using a simple dynamic program to com-
pute expected sufficient statistics, which are just seg-
ment counts.

7.4 Segmentation Results
To our knowledge our system achieves the best per-
formance to date on the Bernstein-Ratner corpus,
with an F1 of 88.0. It is substantially simpler than
the non-parametric Bayesian models proposed by
Johnson et al. (2007), which require sampling pro-
cedures to perform inference and achieve an F1 of
87 (Johnson and Goldwater, 2009). Similar to our
other results, the direct gradient approach outper-
forms EM for feature-enhanced models, and both
approaches outperform the baseline, which achieves
an F1 of 76.9.

8 Conclusion

We have shown that simple, locally normalized
models can effectively incorporate features into un-
supervised models. These enriched models can
be easily optimized using standard NLP build-
ing blocks. Beyond the four tasks explored in
this paper—POS tagging, DMV grammar induc-
tion, word alignment, and word segmentation—the
method can be applied to many other tasks, for ex-
ample grounded semantics, unsupervised PCFG in-
duction, document clustering, and anaphora resolu-
tion.

Acknowledgements

We thank Percy Liang for making his word segmen-
tation code available to us, and the anonymous re-
viewers for their comments.

Appendix: Optimization
In this section, we derive the gradient of the log marginal likeli-
hood needed for the direct gradient approach. Let w0 be the cur-
rent weights in Algorithm 2 and e = e(w0) be the expectations
under these weights as computed in Equation 2. In order to jus-
tify Algorithm 2, we need to prove that⇧L(w0) = ⇧⌃(w0, e).

We use the following simple lemma: if �, ⇥ are real-valued
functions such that: (1) �(w0) = ⇥(w0) for some w0; (2)
�(w) ⇤ ⇥(w) on an open set containing w0; and (3), � and ⇥
are differentiable at w0; then⇧⇥(w0) = ⇧�(w0).

We set ⇥(w) = L(w) and �(w) = ⌃(w, e)�
P

z Pw0(Z =
z|Y = y) log Pw0(Z = z|Y = y). If we can show that ⇥, �
satisfy the conditions of the lemma we are done since the second
term of � depends on w0, but not on w.

Property (3) can be easily checked, and property (2) follows
from Jensen’s inequality. Finally, property (1) follows from
Lemma 2 of Neal and Hinton (1998).

