Basic HMM for POS Induction

Transitiemidssonbdisieribution:

P(2'|2)(z|2)

>@%_
J

.

Parameterization

Key distribution: P(x|NNP) Wi +Cap +2
! +ing -
OrNNp X f eV f
0.1 John +Cap 0.3
0 Mary +Cap 0.3
0.2 running +ing 0.1
0 jumping +ing 0.1

Parameterization

Unsupervised Learning with Features

® Main idea:
L ocal multinomials become maxents

e EM + Maxent M-Step =
Unsupervised Learning w/ features

POS Induction Accuracy

|-to-1 Accuracy

+12.8

Basic Multinomial:
John AN NNP

Rich Features:

John A NNP
+Cap N NNP
+Digit A NNP
+Hyphen A NNP
+ing A NNP

Basic Hard EM

Basic Hard EM

E-Step: Dynamic Program

z «— argmax P(z|x;0)
Z
Dynamic Program

TN\

9 7 M-Step: Divide Counts
\/ 0 — argmax P(x,z;0)
0
Divide Counts c(z—x)

oz =)

Hard EM with Features

H’\
;

« Transform Z

|
|

W'\/

0

)

’

-

|}
| |

Transform

W

Hard EM with Features

Dynamic Program

Train Maxent

E-Step: Dynamic Program

z «— argmax P(z|x;0)

M-Step: Train Maxent

w «— argmax log P(x,z; W)

Hard EM with Features
log P(x,z; W)

= Z log P(xi|zi; W) + ...

N \

Maxent training example
_ J

=) ¢(z — x)log P(x|z; W) + -

2, KJ\
\

Multiplicity

. J

0

)

’

-

|}
| |

Transform

W

Hard EM with Features

Dynamic Program

Train Maxent

E-Step: Dynamic Program

z «— argmax P(z|x;0)

M-Step: Train Maxent

w « argmax log P(x,z; w)

Transform parameters
exp(w!f(z,2))

Zx/ exp(WTf(aj’, Z))

(9:13|z S

EM with Features

E-Step: Dynamic Program

Dynamic Program e(z—rg) e~ B [C(Z . x)]

0

7 M-Step: Train Maxent

’

Transform 7 W — argvrilax 43[log P(x;z; W)]

\ Transform parameters
W 9. exp(w!f(z,2))
z|2 > exp(wlit(z’, z))

Train Maxent

-

EM

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 6

until convergence

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

EM

Basic EM

Initialize probabilities 6
repeat

® Compute expected counts e
@ Fit parameters 0

until convergence

EM

EM with Features

Initialize weights w

repeat

® Compute expected counts e
@ Fit parameters w

@ Transform w to €

until convergence

EM

EM with Features

Initialize weights w

repeat

® Compute expected counts e
repeat

Compute /(w, e)

Compute V/(w, e)

w «— climb(w, {(w,e), V/(w,e))
until convergence

® Transform w to @

until convergence

Fit Params

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute £(w, e)
' Compute V{(w, e)
w « climb(w,/(w,e), V{(w,e))
until convergence
@ Transform w to 6
until convergence

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute £(w, e)
' Compute V{(w, e)
w « climb(w,/(w,e), V{(w,e))
until convergence
@ Transform w to 6
until convergence

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute £(w, e)
' Compute V{(w, e)
w « climb(w,/(w,e), V{(w,e))
until convergence
@ Transform w to 6
until convergence

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute £(w, e)
' Compute V{(w, e)
w « climb(w,/(w,e), V{(w,e))
until convergence
@ Transform w to 6
until convergence

Direct Gradient with Features

EM w/ Features

Initialize weights w
repeat
® Compute expected counts e
repeat
Compute £(w, e)
' Compute V{(w, e)
w « climb(w, {(w,e), V{(w,e))
until convergence
@® Transform w to 6
until convergence

DG w/ Features

Initialize weights w
repeat
@ Compute expected counts e

Compute L(w)

Compute V/(w,e)

w « climb(w, L(w), V/(w,e))
@® Transform w to 6
until convergence

Direct Gradient with Features

Initialize weights w

repeat
® Comy

pute expected counts e
oute L(w)

Com
Com;
W <

ute VI(w, e)
climb(w, L(w), V{(w,e))

@ Transform w to 6
until convergence

Direct Gradient with Features

Initialize weights w

repeat
® Comy

pute expected counts e
oute L(w)

Com
Com;
W <

ute VI(w, e)
climb(w, L(w), V{(w,e))

@ Transform w to 6
until convergence

Direct Gradient with Features

Initialize weights w

repeat
® Comy

pute expected counts e
oute L(w)

Com
Com;
W <

ute VI(w, e)
climb(w, L(w), V{(w,e))

@ Transform w to 6
until convergence

Direct Gradient with Features

Initialize weights w

repeat
® Comy

pute expected counts e
oute L(w)

Com
Com;
W <

ute VI(w, e)
climb(w, L(w), V{(w,e))

@ Transform w to 6
until convergence

POS Induction Results

DT I NN VBZ IN NN
The green cat sleeps at home.
Features:
BASIC: I(y=-,2=")

CONTAINS-DIGIT:

CONTAINS-HYPHEN:
INITIAL-CAP:

N-GRAM:

Check if y contains digit and conjoin
with z:

1 (containsDigit(y) = -,z = -)
1 (containsHyphen(x) = -, z =
Check if the first letter of y 1s
capitalized: 1(isCap(y) = -,z = -)
Indicator functions for character n-
grams of up to length 3 present in y.

)

POS Induction Results

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Many-to-| Accuracy

Features:
BAsIC: I(y=-2=")
CONTAINS-DIGIT: Check if y contains digit and conjoin
with z:
1 (containsDigit(y) = -,z = -)
CONTAINS-HYPHEN: 1(containsHyphen(x) = -,z =)
INITIAL-CAP: Check if the first letter of y is
capitalized: 1(isCap(y) = -,z =)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

Data:
Train and test on entire W§J
No tagging dictionary HMM HMM Features HMM Features
EM EM Gradient

45 POS tags

POS Induction Results

DT JJ NN VBZ IN NN
The green cat sleeps at home.

|-to-1 Accuracy

Features:
BAsIC: I(y=-2=")
CONTAINS-DIGIT: Check if y contains digit and conjoin
with z:
1 (containsDigit(y) = -,z = -)
CONTAINS-HYPHEN: 1(containsHyphen(x) = -,z =)
INITIAL-CAP: Check if the first letter of y is
capitalized: 1(isCap(y) = -,z =)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

Data:
Train and test on entire W§J
No tagging dictionary HMM HMM Features HMM Features
EM EM Gradient

45 POS tags

Grammar Induction Results

AN TV

The green

cat sleeps at home.

Data:

Train

Tune

Test

WSJ 10 Sec. 2-21
CTBI0 Sec. 1-270

WS§SJ10 Sec. 22
CTBI10 Sec. 400-454

WS§SJ10 Sec. 23
CTBI0 Sec.271-300

Features:

BASIC:
NOUN:

VERB:

NOUN-VERB:

BACK-OFF:

la=h=-0=")

Generalize the morphological variants of
nouns by using isNoun(-):

1(a = -,isNoun(h) =-,0 =)
1(isNoun(a) = -,h =-,0 = -)
1(isNoun(a) = -,isNoun(h) = -,§ = -)
Same as above, generalizing verbs instead
of nouns by using isVerb(-)

Same as above, generalizing with
isVerbOrNoun(-) = isVerb(-) VisNoun(-)
We add versions of all other features that
ignore direction or adjacency.

60

40

20

60

40

20

0

English Directed Accuracy

Chinese Directed Accuracy

DMV DMV Features DMV Features Cohen and
EM EM LBFGS Smith ’09
SLN DMV

Word Alignment Results

gato verde duerme en casa.

ST

green sleeps at home.

Data:

Train 10K sentences of FIBIS
Ch-En newswire

Test NIST 2002 Ch-En dev set

Features:
BAsIC: le=-y="-
EDIT-DISTANCE: 1(dist(y,e) = -
DICTIONARY: 1((y,e) € D) for dictionary D
STEM: 1(stem(e) = -,y = -) for Porter stemmer.
PREFIX: 1 (prefix(e) = -,y = -) for prefixes of
length 4.
CHARACTER: 1(e = -,charAt(y,i) = -) for index ¢ in

the Chinese word.

50

40

30

20

10

AER

Model |
EM

Model | Features
EM

HMM
EM

HMM Features
EM

Word Segmentation Results

[T hel][green][cat]

Data:

Train and test on phonetic version

of Bernstein-Ratner corpus

Features:

BASIC: 1(z =

LENGTH: 1 (length(z) = -)
NUMBER-VOWELS: 1 (numVowels(z) =)
PHONO-CLASS-PREF: 1 (prefix(coarsePhonemes(z
PHONO-CLASS-PREF: 1 (suffix(coarsePhonemes(z

)

) =")
) =")

100
20
80
/70
60
50
40
30
20
|0

0

Unigram
EM

Unigram Features Unigram Features

EM

Token FI

+1 .|

LBFGS

Johnson and
Goldwater ’09
Adaptor
Grammar

