Basic HMM for POS Induction

Transitiemidistoribution:

 $P(z'|\mathcal{P}(x|z)$

Parameterization

Key distribution:	P(x NNP)
-------------------	----------

$\theta_{x \mathrm{NNP}}$	${\mathcal X}$	f	$e^{\mathbf{w}^{T}\mathbf{f}}$
0.1	John	+Cap	0.3
0	Mary	+Cap	0.3
0.2	running	+ing	0.1
0	jumping	+ing	0.1

Parameterization

$$\theta_{x|z} = \frac{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{f}(x,z))}{\sum_{x'} \exp(\mathbf{w}^{\mathsf{T}}\mathbf{f}(x',z))}$$

Unsupervised Learning with Features

• <u>Main idea:</u>

Local multinomials become maxents

• EM + Maxent M-Step = Unsupervised Learning w/ features

POS Induction Accuracy

Basic Multinomial:Rich Features:John \wedge NNPJohn \wedge NNP+Cap \wedge NNP+Cap \wedge NNP+Digit \wedge NNP

+Hyphen \land NNP

 $+ing \wedge NNP$

Basic Hard EM

Basic Hard EM

E-Step: Dynamic Program $\mathbf{z} \leftarrow \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Divide Counts

 $oldsymbol{ heta} \leftarrow rgmax_{oldsymbol{ heta}} P(\mathbf{x}, \mathbf{z}; oldsymbol{ heta}) \ = \left[rac{c(z
ightarrow x)}{c(z
ightarrow \cdot)}, \ldots
ight]$

E-Step: Dynamic Program $\mathbf{z} \leftarrow \operatorname{argmax} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname{argmax} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$ M-Step: Livide Counts

 $oldsymbol{ heta} \leftarrow rgmax_{oldsymbol{ heta}} P(\mathbf{x}, \mathbf{z}; oldsymbol{ heta}) \ = \left[rac{c(z
ightarrow x)}{c(z
ightarrow \cdot)}, \ldots
ight]$

 $\log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$ $= \sum \log P(x_i | z_i; \mathbf{w}) + \dots$ Maxent training example $= \sum c(z \to x) \log P(x|z; \mathbf{w}) + \dots$ z, xMultiplicity

E-Step: Dynamic Program $\mathbf{z} \leftarrow \operatorname{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

Transform parameters

$$\theta_{x|z} \leftarrow \frac{\exp(\mathbf{w}^T \mathbf{f}(x, z))}{\sum_{x'} \exp(\mathbf{w}^T \mathbf{f}(x', z))}$$

E-Step: Dynamic Program $e(z \rightarrow x) \rightarrow \mathbb{E}[c(zx \rightarrow x)]$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \mathbb{E}\left[\log P(\mathbf{x}, \mathbf{z}; \mathbf{w})\right]$

Transform parameters

$$\theta_{x|z} \leftarrow \frac{\exp(\mathbf{w}^T \mathbf{f}(x, z))}{\sum_{x'} \exp(\mathbf{w}^T \mathbf{f}(x', z))}$$

Initialize probabilities θ repeat Compute expected counts e Fit parameters θ until convergence

 $\Sigma \begin{bmatrix} \text{Initialize probabilities } \boldsymbol{\theta} \\ \textbf{repeat} \\ \textbf{Ompute expected counts e} \\ \textbf{Fit parameters } \boldsymbol{\theta} \\ \textbf{until convergence} \end{bmatrix}$

EM w/ Features

Initialize weights w

repeat

- Compute expected counts e repeat
 - Compute $\ell(\mathbf{w}, \mathbf{e})$ Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$ $\mathbf{w} \leftarrow \text{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence Transform \mathbf{w} to $\boldsymbol{\theta}$
- until convergence

DG w/ Features

Initialize weights w
repeat
Compute expected counts e

Compute $L(\mathbf{w})$ Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$ $\mathbf{w} \leftarrow \text{climb}(\mathbf{w}, L(\mathbf{w}), \nabla \ell(\mathbf{w}, \mathbf{e}))$

• Transform w to θ until convergence

POS Induction Results

	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

Features:

BASIC:	$\mathbb{1}(y=\cdot,z=\cdot)$
CONTAINS-DIGIT:	Check if y contains digit and conjoin
	with z:
	$\mathbb{1}(\text{containsDigit}(y) = \cdot, z = \cdot)$
CONTAINS-HYPHEN:	$\mathbb{1}(\text{containsHyphen}(x) = \cdot, z = \cdot)$
INITIAL-CAP:	Check if the first letter of y is
	capitalized: $1(isCap(y) = \cdot, z = \cdot)$
N-GRAM:	Indicator functions for character n-
	grams of up to length 3 present in y .

POS Induction Results

DTJJNNVBZINNNThe greencatsleepsathome.

Features:

BASIC: $\mathbb{1}(y = \cdot, z = \cdot)$ CONTAINS-DIGIT:Check if y contains digit and conjoin
with z:
 $\mathbb{1}(\text{containsDigit}(y) = \cdot, z = \cdot)$ CONTAINS-HYPHEN: $\mathbb{1}(\text{containsHyphen}(x) = \cdot, z = \cdot)$ INITIAL-CAP:Check if the first letter of y is
capitalized:
 $\mathbb{1}(\text{isCap}(y) = \cdot, z = \cdot)$ N-GRAM:Indicator functions for character n-
grams of up to length 3 present in y.

Data:

Train and test on entire WSJ No tagging dictionary

45 POS tags

Many-to-I Accuracy

POS Induction Results

DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

Features:

BASIC: $\mathbb{1}(y=\cdot,z=\cdot)$ CONTAINS-DIGIT:Check if y contains digit and conjoin
with z:
 $\mathbb{1}(\text{containsDigit}(y)=\cdot,z=\cdot)$ CONTAINS-HYPHEN: $\mathbb{1}(\text{containsHyphen}(x)=\cdot,z=\cdot)$ INITIAL-CAP:Check if the first letter of y is
capitalized: $\mathbb{1}(\text{isCap}(y)=\cdot,z=\cdot)$ N-GRAM:Indicator functions for character n-
grams of up to length 3 present in y.

Data:

Train and test on entire WSJ

No tagging dictionary

45 POS tags

I-to-I Accuracy

Grammar Induction Results

Word Alignment Results

Word Segmentation Results

[The][green][cat]

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

Features:

BASIC: $1(z = \cdot)$ LENGTH: $1(length(z) = \cdot)$ NUMBER-VOWELS: $1(numVowels(z) = \cdot)$ PHONO-CLASS-PREF: $1(prefix(coarsePhonemes(z)) = \cdot)$ PHONO-CLASS-PREF: $1(suffix(coarsePhonemes(z)) = \cdot)$

