
Structure	and	
Support	Vector	Machines



Outline

• SVMs	for	structured	outputs
– Declara7ve	view
– Procedural	view



Nota%on	for	Linear	Models

• Training	data:		{(x1,	y1),	(x2,	y2),	…,	(xN,	yN)}
• Tes%ng	data:		{(xN+1,	yN+1),	…	(xN+N’,	yN+N’)}
• Feature	func%on:		g
• Weights:		w
• Decoding:
	

• Learning:
	

• Evalua%on:



Empirical	Risk	Minimiza0on

• A	unifying	framework	for	many	learning
algorithms.

	
	
	
	

• Many	op0ons	for	the	loss	func0on	L	and	the
regulariza0on	func0on	R.



Loss	Func)ons	You	Know
Name Expression	of
Log	loss	(joint)

Log	loss
(condi)onal)
Zero-one	loss

Expected	zero-one
loss



Loss	Func)ons	You	Know
Name Expression	of
Log	loss	(joint)

Log	loss
(condi)onal)
Cost

Expected	cost,
a.k.a.	“risk”



Structured	Perceptron

• Described	as	an	online	algorithm.
• On	each	itera9on,	take	one	example,	and

update	the	weights	according	to:
	
	



Loss	Func)ons	You	Know
Name Expression	of
Log	loss	(joint)

Log	loss
(condi)onal)
Cost

Expected	cost,
a.k.a.	“risk”
Perceptron	loss



The	Ideal	Loss	Func0on

• Convex
• Con0nuous
• Cost-aware



Cost	and	Margin

• The	“margin”	is	an	important	concept	when
we	take	the	linear	models	point	of	view.

– A	“large	margin”	means	that	the	correct	output	is
well-separated	from	the	incorrect	outputs.

• Neither	log	loss	nor	“perceptron	loss”	takes
into	account	the	cost	funcAon,	though.

– In	other	words,	some	incorrect	outputs	are	worse
than	others.

	



Mul$class	SVM	(Crammer	and
Singer,	2001)

	
	
	

• The	above	can	be	understood	as	a	0-1	cost;
let’s	generalize	a	bit:

	
	



Max-Margin	Markov	Networks

• Star4ng	point:		mul4class	SVM	(Crammer	and
Singer,	2001)

	
	
	
	



Max-Margin	Markov	Networks

• Standard	transforma7on	to	get	rid	of	explicit
men7on	of	γ,	plus	slack	variables	in	case	the
constraints	cannot	be	met:

	
	
	

• No7ce:
	



Max-Margin	Markov	Networks
• Having	solved	for	the	slack	variables,	we	can	plug

in;	we	now	have	an	unconstrained	problem:
	
	
	

• Ratliff,	Bagnell,	and	Zinkevich	(2007):		subgradient
descent	(or	stochasIc	version)	–	much,	much
simpler	approach	to	opImizing	this	funcIon.

– And	more	perceptron-like!



Structured	Hinge	Loss

• Small	change	to	the	perceptron	loss:
	
	

• Resul8ng	subgradient:
	
	

– Rather	than	merely	decoding,	find	a	candidate	y’
that	is	both	high-scoring	and	dangerous.



• Efficient	cost-augmented	decoding	requires	that
the	cost	func6on	break	into	parts	the	same	way:

Cost-Augmented	Decoding

• Efficient	decoding	is	possible	when	the	features
factor	locally:



An	Exercise

• If	the	features	are	such	that	we	can	use	the
Viterbi	algorithm	for	decoding,	what	are	some
cost	func;ons	we	could	inside	an	efficient
cost-augmented	decoding	algorithm	that’s	a
very	small	change	to	Viterbi?



Structured	Hinge

• Three	different	lines	of	work	all	arrived	at	this
idea,	or	something	very	close.

– Max-margin	Markov	networks
(Taskar,	Guestrin,	and	Koller,	2003)

– Structural	support	vector	machines	(Tsochantaridis,
Joachims,	Hoffman,	and	Altun,	2005)

– Online	passive-aggressive	algorithms	
(Crammer,	Keshet,	Dekel,	Shalev-Shwartz,	and	Singer,
2006)

• Important	developments	in	opRmizaRon
techniques	since	then!

– I’ll	highlight	what	I	think	it’s	most	useful	to	know.



Max-Margin	Markov	Networks

• Taskar	et	al.	actually	work	through	a	dual	version	of	the
problem.

– Primal	and	dual	are	both	QPs;	exponenCally	many
constraints	or	variables,	respecCvely.

• Key	trick:		factored	dual.
– Enables	kernelized	factors	in	the	MN.
– Actual	algorithm	is	sequenCal	minimal	opCmizaCon	(SMO)

for	SVMs,	a	coordinate	ascent	method	(PlaP,	1999).
• The	paper	includes	a	generalizaCon	bound	that	is

argued	to	improve	over	the	Collins	perceptron.
• Experiments:		handwriCng	recogniCon,	text

classificaCon	for	hyperlinked	documents.
	



I’m	Taking	Liber/es

• The	M3N	view	of	the	world	really	thinks	about
outputs	as	configura/ons	in	a	Markov	network.

• They	assume	y	corresponds	to	a	set	of	random
variables,	each	of	which	gets	a	label	in	a	finite
set.

• Their	cost	func/on	is	Hamming	cost:		“how	many
r.v.s	do	I	predict	incorrectly?”

– This	is	convenient	and	makes	sense	for	their
applica/ons.		But	it’s	not	as	general	as	it	could	be.

	



Structural	SVM

• Tsochantaridis	et	al.	(2005)	–	extends	their	2004
paper.

• Slightly	different	version	of	the	loss	funcCon:
	
	
	

– AlternaCve	version	of	cost-augmented	decoding
(“slack	rescaling”	as	opposed	to	Taskar	et	al.’s	“margin
rescaling”)



Op#miza#on	Algorithms	for	SSVMs
• Taskar	et	al.	(2003):		SMO	based	on	factored	dual
• BartleF	et	al.	(2004)	and	Collins	et	al.	(2008):

	exponen#ated	gradient
• Tsochantaridis	et	al.	(2005):		cuLng	plane	(based	on

dual)



Cu#ng	Plane

• There	are	exponen2ally	many	constraints!
	
	
	
	

• Instead	of	enumera2ng	them	all,	let’s
dynamically	add	constraints	as	needed

• Iterate:	solve	a	relaxa2on	with	a	subset	of
constraints,	then	add	most	violated	constraint

	
	























Op#miza#on	Algorithms	for	SSVMs

• Taskar	et	al.	(2003):		SMO	based	on	factored	dual
• BartleF	et	al.	(2004)	and	Collins	et	al.	(2008):

	exponen#ated	gradient
• Tsochantaridis	et	al.	(2005):		cuLng	plane	(based	on

dual)
• Taskar	et	al.	(2005):		dual	extragradient
	
Easiest	to	use,	in	my	opinion:
	

• Ratliff	et	al.	(2006):		(stochas#c)	subgradient	descent
• Crammer	et	al.	(2006):		online	“passive-aggressive”

algorithms
	



Stochas(c	Subgradient	Descent

• Unconstrained	primal	objec(ve:
	
	

• Resul(ng	subgradient:
	
	

– Only	requires	loss-augmented	decode!	No	need
for	marginals	/	summing	(cf.	CRF)



“Passive	Aggressive”	Learners

• Star2ng	point	is	the	perceptron,	and	the	focus
is	on	the	step	size.

• In	NLP,	people	o@en	use	a	specific	instance
called	“1-best	MIRA”	(margin	infused
relaxa2on	algorithm).				

– Some2mes	with	regular	decoding,	some2mes
cost-augmented	decoding.

• I	do	not	understand	the	name	(kind	of	I	do)



Passive-Aggressive	Update	

in	a	Nutshell	(“1-best	MIRA”)

• Given	x	(and	y),	perform	decoding	(or	cost-

augmented	decoding)	to	obtain	y’.

• To	get	the	updated	weights,	solve:

	

	

	

• Closed	form	soluMon!

– EssenMally,	a	subgradient	update	with	a	closed-

form	step	size.

	

	

	



Perceptron	and	PA

• The	PA	papers	(e.g.,	Crammer	et	al.,	2006)	take	a
procedural	view	of	online	learning	and	prove
convergence	and	regret-style	bounds.

• An	alternaEve	view,	described	by	MarEns	et	al.
(2010),	derives	the	same	updates	via	dual
coordinate	ascent.

– Confusing	name:		it	doesn’t	work	in	the	dual!
– More	general:		applies	to	many	other	loss	funcEons,

so	you	can	get	a	closed-form	step	size	for	perceptron
and	CRFs.

– Assumes	L2	regularizaEon;	role	of	regularizaEon
constant	C	is	very	clear	in	the	form	of	the	update.



Dual	Coordinate	Ascent	Update

• Assumes	L2	regulariza9on.
• 1-best	MIRA	is	a	special	case	with	structured	hinge	loss.
• Can	get	regulariza9on	into	perceptron	this	way	(use

perceptron	loss).
• Can	get	closed-form	step	size	for	CRF	stochas9c	GD.



Hinge	Loss	and	Log	Loss

• Hinge	loss	(M3N):
	
	

• Log	loss	(CRF):
	
	
	



Aside:		Probabili.es	and	Cost?

• “So5max	margin”	(Gimpel	and	Smith,	2010):
	

• Hinge	loss	(M3N):
	
	

• Log	loss	(CRF):
	
	
	



Loss	Func)ons	You	Know
Name Expression	of
Log	loss	(joint)

Log	loss
(condi)onal)
Cost

Expected	cost,
a.k.a.	“risk”
Perceptron	loss

Hinge	(margin
rescaling	version)



On	Regulariza-on

• In	principle,	this	choice	is	orthogonal	to	the
loss	func-on.

• L2	is	the	most	common	star-ng	place.
• L1	and	other	sparsity-inducing	regularizers

have	some	nice	proper-es,	but	they	can	make
op-miza-on	more	complicated



Does	this	ma+er?

	



Prac%cal	Advice
• Features	s%ll	more	important	than	the	loss

func%on.
– But	general,	easy-to-implement	algorithms	are	quite

useful!
• Perceptron	is	easiest	to	implement.
• CRFs	and	SSVMs	usually	do	beGer.
• If	the	cost	func%on	factors	locally,	I	recommend

using	a	hinge	loss	and	stochas%c	subgradient
descent.

• Tune	the	regulariza%on	constant.
– Never	on	the	test	data.


