Structure and
Support Vector Machines

Outline

e SVMs for structured outputs
— Declarative view
— Procedural view

Notation for Linear Models

Training data: {(x1, y1), (x2, y2), ..., (XN, yN)}
Testing data: {(xN+1, yN+1), ... (xN+N’, yN+N’)}
Feature function: g

Weights: w

Decoding:
decode(w,x) = argmaxw ' g(x,y)
Learning: Y
- N . e v N
learn ({(z;,y;)}iv,) = argmax® (w,{(x;,y;)}il,)
Evaluation: w

N’
% Z cost ((19(:0(19 (learn ({ (x;,y,;) ,\:l) LN +I-) YN H)
pA—

Empirical Risk Minimization

e Aunifying framework for many learning
algorithmes.

learn ({(a)zyl) ,\:1) = argmax® (W-,{(flhiayz') \—)

W

N
1
— uomn TZ w,x;,y;) +R(w)
i=1

N >
Y

~ E[L(w,X.Y)]

e Many options for the loss function L and the
regularization function R.

Loss Functions You Know

Name | Expression of L(w,x,y)
Log loss (joint) _ log p(w, Yy ‘ W)
Log loss
(conditional) - lng(y ‘ L W)

Zero-one loss]_{deCOde(W7 iB) ?é y}

Expected zero-one 1 —

loss p(y | CB,W)

Loss Functions You Know

Name | Expression of L(w,x,y)

Log loss (joint) — log p(w, Yy ‘ W)

Log |

i)~ logP(y [2, W)

Cost cost(decode(w, x), y)
et Epyiaw)[cost(Y, y)]

Structured Perceptron

e Described as an online algorithm.

e On each iteration, take one example, and
update the weights according to:

w o — W+ a(g(@,y,) - g(x:, decode(w, x¢)))

Loss Functions You Know

m Expression of L.(w, x, y

Logloss (oint) o0 (g5 4y | W)

Log |

maroray o8 p(y |z, W)

Cost cost(decode(w,), y)
Pt Byl w[cost (Y, y)

Perceptron loss _WTg(m, y) + max WTg(wa y,)
yl

The Ideal Loss Function

e (Convex
e (Continuous
e (Cost-aware

Cost and Margin

The “margin” is an important concept when
we take the linear models point of view.

A “large margin” means that the correct output is
well-separated from the incorrect outputs.

Neither log loss nor “perceptron loss” takes

into account the cost function, though.

In other words, some incorrect outputs are worse
than others.

Multiclass SVM (Crammer and
Singer, 2001)

max -y
w

s.t. |w] <1
Vi,Vy, wg(@,y) —w gl@,y) >4 | LY7Y
o g SES =1 0 otherwise
The above can be understood as a 0-1 cost;
let’s generalize a bit:

max -y
W

s.t. |lwl| <1
\V/'i,Vy, WTg(m‘i?yi) _ WTg(miay) > A!"C()St(y-. yl)

Max-Margin Markov Networks

Starting point: multiclass SVM (Crammer and
Singer, 2001)

max -y
W

s.t. [jwl] <1
Vi, Vy, WTg(szyi) - WTg(wiay:) > ~yeost(y, y;)

Max-Margin Markov Networks

Standard transformation to get rid of explicit
mention of y, plus slack variables in case the
constraints cannot be met:

C N

min — ||w||3 + E &i

w2 —
—

s.t. Vi, Yy, ng(CB-I-_. Y;) — w*g(w,xy) > cost(y,y;) — &

Notice:
Vi,Vy, & > —w' gz, y;) +w gl@i.y) + cost(y. y;)
Vi, & > max-—w' g(z;,y;)+w g(®.y)+ cost(y,y,;)

Y

Max-Margin Markov Networks

Having solved for the slack variables, we can plug
in; we now have an unconstrained problem:

N
. C . _ . , . .
min 7\|w[:§ - Z —w ' g(x;,y,) + maxw ' g(x;,y) + cost(y.y,;)
w2 . y

=1

Ratliff, Bagnell, and Zinkevich (2007): subgradient
descent (or stochastic version) — much, much

simpler approach to optimizing this function.
And more perceptron-like!

—gj(x,y) + g;(x, cost_augmented_decode(w, x))

Structured Hinge Loss

Small change to the perceptron loss:

Liw,z,y) = -w gz, y)+maxw g(x, y')+ cost(y’,y)
y/

Resulting subgradient:
—gi(x,y) + g;j(x, cost_augmented_decode(w, x))

Rather than merely decoding, find a candidate y’
that is both high-scoring and dangerous.

Cost-Augmented Decoding

decode(w,xz) = argmaxw g(x,y')
Yy’ |
cost_augmented_decode(w,x,y) = argmax WTg(IB. y') + cost(y', y)
yf

e Efficient decoding is possible when the features
factor locally:

g(xz,y) = > f(ax,part,(y))

e Efficient cost-augmented decoding requires that
the cost function break into parts the same way:

cost(y'.y) = Z local_cost(partp(y'), Y)
P

An Exercise

e |fthe features are such that we can use the
Viterbi algorithm for decoding, what are some
cost functions we could inside an efficient
cost-augmented decoding algorithm that’s a
very small change to Viterbi?

Structured Hinge

Three different lines of work all arrived at this

idea, or something very close.

Max-margin Markov networks
(Taskar, Guestrin, and Koller, 2003)

Structural support vector machines (Tsochantaridis,
Joachims, Hoffman, and Altun, 2005)

Online passive-aggressive algorithms

(Crammer, Keshet, Dekel, Shalev-Shwartz, and Singer,
2006)

Important developments in optimization

techniques since then!
I’ll highlight what | think it’s most useful to know.

Max-Margin Markov Networks

Taskar et al. actually work through a dual version of the
problem.
Primal and dual are both QPs; exponentially many
constraints or variables, respectively.

Key trick: factored dual.
Enables kernelized factors in the MN.
Actual algorithm is sequential minimal optimization (SMO)
for SVMs, a coordinate ascent method (Platt, 1999).

The paper includes a generalization bound that is
argued to improve over the Collins perceptron.

Experiments: handwriting recognition, text
classification for hyperlinked documents.

I’'m Taking Liberties

The M3N view of the world really thinks about
outputs as configurations in a Markov network.

They assume y corresponds to a set of random
variables, each of which gets a label in a finite
set.

Their cost function is Hamming cost: “how many

r.v.s do | predict incorrectly?”
This is convenient and makes sense for their
applications. But it’s not as general as it could be.

Structural SVM

Tsochantaridis et al. (2005) — extends their 2004
paper.
Sllghtly dlfferent version of the loss function:

111111 —HWH + Z €i

S.t. \:/l \V/y W g(wl yz) W—-g(a:l y) > ‘+‘1 —
Alternative version of cost-augmented decod)néy Yi)

4 o

(“slack rescaling” as opposed to Taskar et al.”s “margin
rescaling”)

Optimization Algorithms for SSVMs

e Taskaretal. (2003): SMO based on factored dual

e Bartlett et al. (2004) and Collins et al. (2008):
exponentiated gradient

e Tsochantaridis et al. (2005): cutting plane (based on
dual)

Cutting Plane

There are exponentially many constraints!

C N

min — || w||5 + E &i
w 2 = =1
| —

s.t. Vi,Vy, w'g(ai,y;) —w' gz y) > cost(y,y;) — &

Instead of enumerating them all, let’s
dynamically add constraints as needed

Iterate: solve a relaxation with a subset of
constraints, then add most violated constraint

Cutting Plane

Cutting Plane

Cutting Plane

Cutting Plane

Cutting Plane

Cutting Plane

Optimization Algorithms for SSVMs

Taskar et al. (2003): SMO based on factored dual

Bartlett et al. (2004) and Collins et al. (2008):
exponentiated gradient

Tsochantaridis et al. (2005): cutting plane (based on
dual)

Taskar et al. (2005): dual extragradient
Easiest to use, in my opinion:

Ratliff et al. (2006): (stochastic) subgradient descent

Crammer et al. (2006): online “passive-aggressive”
algorithms

Stochastic Subgradient Descent

Unconstrained primal objective:

Liw,z,y) = -w gz, y)+maxw g(x, y')+ cost(y’,y)
y/

Resulting subgradient:
—gi(x,y) + g;j(x, cost_augmented_decode(w, x))

Only requires loss-augmented decode! No need
for marginals / summing (cf. CRF)

“Passive Aggressive” Learners

Starting point is the perceptron, and the focus
is on the step size.

In NLP, people often use a specific instance
called “1-best MIRA” (margin infused

relaxation algorithm).

Sometimes with regular decoding, sometimes
cost-augmented decoding.

| do not understand the name (kind of | do)

Passive-Aggressive Update
in a Nutshell (“1-best MIRA”)

Given x (and y), perform decoding (or cost-
augmented decoding) to obtain y’.

To get the updated weights, solve:

. / 2
min [[w’ — wi|,

st. wog(z,y) - w g(z,y') > cost(y', y)

Closed form solution!
Essentially, a subgradient update with a closed-
form step size.

Perceptron and PA

The PA papers (e.g., Crammer et al., 2006) take a
procedural view of online learning and prove
convergence and regret-style bounds.

An alternative view, described by Martins et al.
(2010), derives the same updates via dual

coordinate ascent.
Confusing name: it doesn’t work in the duall
More general: applies to many other loss functions,
SO you can get a closed-form step size for perceptron
and CRFs.
Assumes L2 regularization; role of regularization
constant Cis very clear in the form of the update.

Dual Coordinate Ascent Update

1 Liw,x,y) }
W — W -—minsg —, — = ¢ Vwl(w,z,y)
{(||VWL(W£B,’y)||:§ — ~~ d
b ~ ~ subgradient
step size

Assumes L2 regularization.
1-best MIRA is a special case with structured hinge loss.

Can get regularization into perceptron this way (use
perceptron loss).

Can get closed-form step size for CRF stochastic GD.

Hinge Loss and Log Loss

Hinge loss (M3N):

~w ' g(x,y) + maxw ' g(x,y') + cost(y’, y)
Yy

Log loss (CRF):

~w ' g(z,y) +log Y expw'g(z,y)
y/

Aside: Probabilities and Cost?

Hinge loss (M3N):

~w ' g(x,y) + maxw ' g(x,y') + cost(y’, y)
Yy

Log loss (CRF):

~w ' g(z,y) +log Y expw'g(z,y)

/

Yy
“Softmax margin” (Gimpel and Smith, 2010):

~w'g(@,y) +log Y _exp(w gz y) + cost(y',y))
,y/

Loss Functions You Know

Name | Expressionof L(w.x

Log loss (joint)

Log loss
(conditional)

Cost

Expected cost,
a.k.a. “risk”

Perceptron loss

Hinge (margin
rescaling version)

—logp(z,y | w)
—logp(y | @, w)
cost(decode(w, x), y)
(v 2w [cost (Y, y)]

maxw ' g(x,y') - w'g(@,y)

max ng(a:, y') + cost(y’, Y) — ng(m, Y)
yl

On Regularization

n principle, this choice is orthogonal to the
oss function.

|2 is the most common starting place.

|1 and other sparsity-inducing regularizers
nave some nice properties, but they can make
optimization more complicated

Does this matter?

Practical Advice

Features still more important than the loss

function.
But general, easy-to-implement algorithms are quite

useful!
Perceptron is easiest to implement.

CRFs and SSVMs usually do better.

If the cost function factors locally, | recommend
using a hinge loss and stochastic subgradient

descent.

Tune the regularization constant.
Never on the test data.

