Recitation 1

Viterbi Decoding & HW1

Chaitanya Ahuja

Carnegie Mellon University

- 1. Introduction
- 2. HW Goals
- 3. Decoding
- 4. Feature Extraction
- 5. Caveats
- $6. \ {\sf Questions} \ ?$

Introduction

Named Entity Recognition

I-ORG	ο	I-MISC	0	ο	ο	I-MISC	0
EU	rejects	German	call	to	boycott	British	lamb

HW Goals

• How to extract features, and estimate scores using a linear transform

- How to extract features, and estimate scores using a linear transform
- Use the scores as a metric for Viterbi Decoding

Decoding

Mathematical Formulation

Let
$$s_1, \ldots, s_n \in \Omega$$
 and $w_1, \ldots, w_n \in \Sigma$.
 $score_0 = \gamma (s_1| < \text{START} >) \eta (w_1|s_1)$ (1)
 $score_n = \max_{s_n} \gamma (s_n|s_{n-1}) \eta (w_n|s_n) score_{n-1}$ (2)
 $= \max_{s_1, \ldots, s_n} \prod_{i=1}^n \gamma (s_i|s_{i-1}) \eta (w_i|s_i)$ (3)

Mathematical Formulation

Let
$$s_1, \ldots, s_n \in \Omega$$
 and $w_1, \ldots, w_n \in \Sigma$.
 $score_0 = \gamma (s_1 | < \text{START} >) \eta (w_1 | s_1)$
 $score_0 = \max \gamma (s_1 | s_1 - s_1) \eta (w_1 | s_2) score_1$

$$score_{n} = \max_{s_{n}} \gamma\left(s_{n}|s_{n-1}\right) \eta\left(w_{n}|s_{n}\right) score_{n-1}$$
(2)

$$= \max_{s_1,\ldots,s_n} \prod_{i=1}^n \gamma\left(s_i | s_{i-1}\right) \eta\left(w_i | s_i\right)$$
(3)

$$\gamma\left(s_{i}|s_{i-1}\right)\eta\left(w_{i}|s_{i}\right)\approx\exp\left(\mathbf{W}^{\mathsf{T}}g\left(w_{i},w_{i-1},w_{i+1},s_{i},s_{i-1}\right)\right)$$

(1)

Mathematical Formulation

Let
$$s_1, \ldots, s_n \in \Omega$$
 and $w_1, \ldots, w_n \in \Sigma$.

$$score_{0} = \gamma \left(s_{1} | < \mathsf{START} > \right) \eta \left(w_{1} | s_{1} \right) \tag{1}$$

$$score_{n} = \max_{s_{n}} \gamma\left(s_{n}|s_{n-1}\right) \eta\left(w_{n}|s_{n}\right) score_{n-1}$$
(2)

$$= \max_{s_1,\ldots,s_n} \prod_{i=1}^n \gamma\left(s_i|s_{i-1}\right) \eta\left(w_i|s_i\right)$$
(3)

$$\gamma\left(s_{i}|s_{i-1}\right)\eta\left(w_{i}|s_{i}\right)\approx\exp\left(\mathbf{W}^{\mathsf{T}}g\left(w_{i},w_{i-1},w_{i+1},s_{i},s_{i-1}\right)\right)$$

$$score_{n} = \max_{s_{1},...,s_{n}} \prod_{i=1}^{n} \exp\left(\mathbf{W}^{T} g\left(w_{i}, w_{i-1}, w_{i+1}, s_{i}, s_{i-1}\right)\right)$$
(4)

$$\log(score_n) = \max_{s_1, \dots, s_n} \sum_{i=1}^n \mathbf{W}^T g(w_i, w_{i-1}, w_{i+1}, s_i, s_{i-1})$$
(5)

$$\log(score_{n}) = \max_{s_{n}} \mathbf{W}^{T} g(w_{n}, w_{n-1}, w_{n+1}, s_{n}, s_{n-1}) + \log(score_{n-1})$$
(6)

Feature Extraction

What are features and weights?

```
• Features: g(w_i, w_{i-1}, w_{i+1}, s_i, s_{i-1}) = \sum_{\forall j} g_j

The represent the occurrence of a certain set of patterns. For

example:

g_1(w_i, s_i): Pi=NNP:Ti=I-LOC 1.0

g_2(w_i, w_{i+1}, s_i): Wi=France:Wi+1=and:Ti=I-LOC 1.0

g_3(s_i, s_{i-1}): Ti-1=<START>:Ti=I-LOC

...
```

What are features and weights?

```
• Features: g(w_i, w_{i-1}, w_{i+1}, s_i, s_{i-1}) = \sum_{\forall j} g_j

The represent the occurrence of a certain set of patterns. For

example:

g_1(w_i, s_i): Pi=NNP:Ti=I-LOC 1.0

g_2(w_i, w_{i+1}, s_i): Wi=France:Wi+1=and:Ti=I-LOC 1.0

g_3(s_i, s_{i-1}): Ti-1=<START>:Ti=I-LOC

...
```

• Weights **W** are proportional to the probability of the occurrence of the corresponding features. For example:

```
Oi=rating:Ti=I-LOC -3.0
Oi=october:Ti-1=0:Ti=0 10.0
```

```
CAPi=False:Ti=0 50.0
CAPi=False:Ti=0 -31.0
```

 $s_1, \ldots, s_n \in \Omega$ and $w_1, \ldots, w_n \in \Sigma$.

• For each *i*, features that depend on *w_i* can be deterministically estimated.

 $s_1, \ldots, s_n \in \Omega$ and $w_1, \ldots, w_n \in \Sigma$.

- For each *i*, features that depend on *w_i* can be deterministically estimated.
- But, features involving s_i are a little more tricky. They must be estimated assuming that all possible states s_i ∈ Ω could have occurred and the best state is chosen based on scores for step i − 1

```
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
```

 $^{^1}$ The chosen example does not reflect the views of the author but my laziness to go beyond the first sample in the data:P

```
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
```

¹The chosen example does not reflect the views of the author but my laziness to go beyond the first sample in the data:P

```
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
```

• $Pi=JJ:Ti=\langle \forall s_i \in \Omega > 1.0$

¹The chosen example does not reflect the views of the author but my laziness to go beyond the first sample in the data:P

```
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
```

- $Pi=JJ:Ti=\langle \forall s_i \in \Omega > 1.0$
- Wi=British:Wi+1=lamb:Ti= $\langle \forall s_i \in \Omega > 1.0$

¹The chosen example does not reflect the views of the author but my laziness to go beyond the first sample in the data:P

```
EU NNP I-NP I-ORG
rejects VBZ I-VP O
German JJ I-NP I-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP I-MISC
lamb NN I-NP O
```

- $Pi=JJ:Ti=\langle \forall s_i \in \Omega > 1.0$
- Wi=British:Wi+1=lamb:Ti= $\langle \forall s_i \in \Omega > 1.0$
- Ti-1=< $\forall s_i \in \Omega >:$ Ti=< $\forall s_i \in \Omega >$ 1.0

 $^{^1}$ The chosen example does not reflect the views of the author but my laziness to go beyond the first sample in the data:P

Estimation: Wait for a couple of weeks. For this Assignment, we just need to use the given weights. We use the extracted features and find the corresponding weights $\forall s_i, s_{i-1} \in \Omega$ and call this matrix **PScore**_i.

s_i/s_{i-1}	0	I-PER	I-ORG	I-MISC	I-LOC	B-ORG	B-MISC	B-LOC
0	25.0	5.0	1.0	-3.0	-2.0	-4.0	-7.0	-2.0
I-PER	6.0	23.0	-9.0	-7.0	-15.0	0.0	-1.0	-1.0
I-ORG	2.0	-16.0	32.0	-9.0	-13.0	-1.0	-1.0	0.0
I-MISC	-4.0	-9.0	-11.0	23.0	-2.0	0.0	6.0	-1.0
I-LOC	2.0	-4.0	-17.0	-8.0	25.0	0.0	-1.0	2.0
B-ORG	-2.0	-2.0	2.0	-1.0	0.0	3.0	0.0	0.0
B-MISC	-6.0	-1.0	-2.0	8.0	-2.0	0.0	0.0	0.0
B-LOC	-5.0	-1.0	-2.0	-1.0	8.0	0.0	0.0	0.0

How do we estimate scores?

 $s_1,\ldots,s_n\in\Omega$ and $w_1,\ldots,w_n\in\Sigma$.

	^s i-1	s_i/s_{i-1}	0	I-PER	I-ORG	I-MISC	I-LOC	B-ORG	B-MISC	B-LOC
0	$Score_{i-1}(1)$	ο	25.0	5.0	1.0	-3.0	-2.0	-4.0	-7.0	-2.0
I-PER	$Score_{i-1}(2)$	I-PER	6.0	23.0	-9.0	-7.0	-15.0	0.0	-1.0	-1.0
I-ORG	$Score_{i-1}(3)$	I-ORG	2.0	-16.0	32.0	-9.0	-13.0	-1.0	-1.0	0.0
I-MISC	$Score_{i-1}(4)$	I-MISC	-4.0	-9.0	-11.0	23.0	-2.0	0.0	6.0	-1.0
I-LOC	$Score_{i-1}(5)$	I-LOC	2.0	-4.0	-17.0	-8.0	25.0	0.0	-1.0	2.0
B-ORG	$Score_{i-1}(6)$	B-ORG	-2.0	-2.0	2.0	-1.0	0.0	3.0	0.0	0.0
B-MISC	$Score_{i-1}(7)$	B-MISC	-6.0	-1.0	-2.0	8.0	-2.0	0.0	0.0	0.0
B-LOC	$Score_{i-1}(8)$	B-LOC	-5.0	-1.0	-2.0	-1.0	8.0	0.0	0.0	0.0

Figure 1: Score_{*i*-1} (Left) and PScore_{*i*} (Right)

 For each *i*, estimate the best local score by considering all possible states for s_i and s_{i-1}. This is an O(|Ω|²) operation.

How do we estimate scores?

 $s_1, \ldots, s_n \in \Omega$ and $w_1, \ldots, w_n \in \Sigma$.

	^s i-1	s_i/s_{i-1}	0	I-PER	I-ORG	I-MISC	I-LOC	B-ORG	B-MISC	B-LOC
0	$Score_{i-1}(1)$	ο	25.0	5.0	1.0	-3.0	-2.0	-4.0	-7.0	-2.0
I-PER	$Score_{i-1}(2)$	I-PER	6.0	23.0	-9.0	-7.0	-15.0	0.0	-1.0	-1.0
I-ORG	$Score_{i-1}(3)$	I-ORG	2.0	-16.0	32.0	-9.0	-13.0	-1.0	-1.0	0.0
I-MISC	$Score_{i-1}(4)$	I-MISC	-4.0	-9.0	-11.0	23.0	-2.0	0.0	6.0	-1.0
I-LOC	$Score_{i-1}(5)$	I-LOC	2.0	-4.0	-17.0	-8.0	25.0	0.0	-1.0	2.0
B-ORG	$Score_{i-1}(6)$	B-ORG	-2.0	-2.0	2.0	-1.0	0.0	3.0	0.0	0.0
B-MISC	$Score_{i-1}(7)$	B-MISC	-6.0	-1.0	-2.0	8.0	-2.0	0.0	0.0	0.0
B-LOC	$Score_{i-1}(8)$	B-LOC	-5.0	-1.0	-2.0	-1.0	8.0	0.0	0.0	0.0

Figure 1: Score_{*i*-1} (Left) and PScore_{*i*} (Right)

• $Score_i(j) = \max_k Score_{i-1}(k) + PScore_i(j,k)$ $\forall j \in \{1, \dots, |\Omega|\}$

Caveats

Caveat 1: Features do not depend on states

	^s i-1		s _i
0	c_{i-1}	0	Ci
I-PER	c_{i-1}	I-PER	Ci
I-ORG	c_{i-1}	I-ORG	C _i
I-MISC	C_{i-1}	I-MISC	C _i
I-LOC	c_{i-1}	I-LOC	C _i
B-ORG	c_{i-1}	B-ORG	C _i
B-MISC	c_{i-1}	B-MISC	C _i
B-LOC	c_{i-1}	B-LOC	c _i

• Scores are constant across States

Caveat 1: Features do not depend on states

- Scores are constant across States
- Which makes the prediction of states Random!

Caveat 2: Features only depend on the current state (s_i)

	^s i-1	s_i/s_{i-1}	0	I-PER	
0	$Score_{i-1}(1)$	0	$PScore_i(1, 1)$	$PScore_i(1, 2)$	
I-PER	$Score_{i-1}(2)$	I-PER	PScore _i (2, 1)	$PScore_i(2, 2)$	
I-ORG	$Score_{i-1}(3)$	I-ORG	PScore _i (3, 1)	$PScore_i(3, 2)$	
I-MISC	$Score_{i-1}(4)$	I-MISC	PScore _i (4, 1)	$PScore_i(4, 2)$	
I-LOC	$Score_{i-1}(5)$	I-LOC	$PScore_i(5, 1)$	$PScore_i(5, 2)$	
B-ORG	$Score_{i-1}(6)$	B-ORG	PScore _i (6, 1)	PScore _i (6, 2)	
B-MISC	$Score_{i-1}(7)$	B-MISC	PScore _i (7, 1)	PScore;(7, 2)	
B-LOC	$Score_{i-1}(8)$	B-LOC	PScore _i (8, 1)	PScore _i (8, 2)	

Caveat 2: Features only depend on the current state (s_i)

	^s i-1		<i>si</i> -1
0	$Score_{i-1}(1)$	0	PScore _i (1)
I-PER	$Score_{i-1}(2)$	I-PER	PScore _i (2)
I-ORG	$Score_{i-1}(3)$	I-ORG	PScore _i (3)
I-MISC	$Score_{i-1}(4)$	I-MISC	PScore _i (4)
I-LOC	$Score_{i-1}(5)$	I-LOC	PScore _i (5)
B-ORG	$Score_{i-1}(6)$	B-ORG	PScore _i (6)
B-MISC	$Score_{i-1}(7)$	B-MISC	PScore _i (7)
B-LOC	$Score_{i-1}(8)$	B-LOC	PScore _i (8)

• The PScore; reduces to a 1-D matrix.

Caveat 2: Features only depend on the current state (s_i)

- The PScore; reduces to a 1-D matrix.
- It is equivalent to a greedy approach.

• Adding dependency on far-away states (s_{i-k} for $k \ge 2$) changes

- Adding dependency on far-away states $(s_{i-k} \text{ for } k \ge 2)$ changes
 - Computational complexity to $O\left(n|\Omega|^{k+1}
 ight)$

- Adding dependency on far-away states $(s_{i-k} \text{ for } k \ge 2)$ changes
 - Computational complexity to $O\left(n|\Omega|^{k+1}
 ight)$
 - Space complexity to O (n|Ω|^k)

- Adding dependency on far-away states $(s_{i-k} \text{ for } k \ge 2)$ changes
 - Computational complexity to $O\left(n|\Omega|^{k+1}
 ight)$
 - Space complexity to $O(n|\Omega|^k)$
- Hence, if |Ω| = m, the matrix size to store the relevant scores for features dependent on (s_i, s_{i-1}, s_{i-2}) is n × m × m

Questions ?