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Distributions over discrete sets

• Computing probabilities over very large sets of 
distinctly identifiable elements
– Sets which can be mapped to sets of integers
– Or even to all of 

• i.e. countable sets



Discrete sets: Examples

• The set of all integers with exactly N digits 
– How large is this set?

• The set of all integers with up to N digits
– How large is this set?

• Other examples?



Discrete sets: Examples

• The set of all integers with exactly N digits
• The set of all integers with up to N digits

• Other examples?
– All possible sentences you can speak in 15 

seconds.
– All possible character sequences
– All musical melodies in C major

• All melodies in C major that require less than 5 minutes 
to sing



Discrete sets: Examples

• Segmentation:
– Ireturnedandsawunderthesunthattheraceisnottoth

eswiftnorthebattletothestrongneitheryetbreadtoth
ewisenoryetrichestomenofunderstandingnoryetfav
ortomenofskillbuttimeandchancehappentothemall

– How many possible sentences?
• Assuming any sequence of characters is a valid word?
• Assuming words must come from a fixed dictionary?



Discrete sets: Examples

• Segmentation:
– Ireturnedandsawunderthesunthattheraceisnottothesw

iftnorthebattletothestrongneitheryetbreadtothewisen
oryetrichestomenofunderstandingnoryetfavortomenof
skillbuttimeandchancehappentothemall

• With correction:
– Iretrunedandsawunnderthhesunthettheraceisnottothe

sviftnorthebatletothestrongneitheryetbreadtotheweis
enoryetrichestomenofandurstendinnoryetfeyvortomen
ofskillbuttymeandchancehappenetothemall



A characteristic of the examples 
you saw..

• Sequences
• Ordering is important

– Ireturnedandsaw ndsaIreaturnwed



Assigning probabilities to discrete 
sets

• All entries in the set are equally likely?

• The probability of any entry with elements in the 
sequence is proportional to 

• The total probability of all entries of length is 
proportional to 

• The probability of any entry with N elements in the 
sequence is proportional to 
–
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Discrete Sets
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– “All generatable sentences are equally likely”?
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Assigning Probabilities over 
Discrete Sets

• Segmentation:
– Ireturnedandsawunderthesunthattheraceisnottotheswiftnorthebattlet

othestrong…

– “All generatable sentences are equally likely”?

• Why is this a bad idea?
– Because this assumes no structure
– Structure:  

• Some sequences are more likely than others
• Some sequences never happen

• Knowing that there is structure is not the same as knowing the 
structure
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The Indus Valley Civilization

• One of the oldest civilizations, known to have been extremely advanced
– Only known advanced civilization that left no evidence of warfare, or even armies!!!

• But nobody has yet deciphered their script!

The mysterious Indus unicorn on a roughly 
4,000-year-old sealstone, found at the 
Mohenjo-daro site.  (from Nature, April 16)



The Indus Valley Script

• The Indus script is made up of partially pictographic signs and human
and animal motifs including a puzzling 'unicorn'. These are inscribed on
miniature steatite (soapstone) seal stones, terracotta tablets and
occasionally on metal. The designs are “little masterpieces of controlled
realism, with a monumental strength in one sense out of all proportion
to their size and in another entirely related to it”, wrote the best-known
excavator of the Indus civilization, Mortimer Wheeler, in 19681.
– From Nature, April 2016



A Controversy

• Electronic Journal of Vedic Studies, 2004



The not a language hypothesis

• Indus valley inscriptions are only between 5 and 14 characters long

• The distribution of symbols is no different from the Zipfian
distribution of decorative symbols in various illiterate cultures
– The entropy of the distributions shows a lack of structure associated 

with a real language of any kind

• Still an ongoing controversy
– I suspect Sproat is right that these don’t represent true script.
– This does not mean the I-V civilization didn’t have a script; just that 

they did not record it on stone…

• Example of not knowing if there is structure!



World’s oldest known music: 
Hurrian Hymn

• Music transcriptions discovered in the Amorite-Canaanite 
city of Ugarit (Ras Shamra in modern day Syria)
– From Ca 1400BC!

• Oldest notated music known



Hurrian Hymns
• 36 songs found in all

– Songs to Amorite gods

• Of these, only Hymn no. 6 written to Nikkal, the 
goddess of orchards, is complete 

• Known to be music
– Amorites wrote in Akkadian, which is understood
– Attendant inscriptions describe the music
– Some of them include the name of the compose

• Though not Hymn no. 6

– Even includes instruction that it must be sung by a singer 
with a lyre



What is missing???

• What do those symbols mean??
• What are the notes?

– Or the cadence?

• No analogy to any other music available
• Structure is known to be present, but the structure is not 

understood!!



The outcomes..

• Hm…

http://www.urkesh.org/urkeshpublic/music.htm



When interpretation is not a problem

• Seikilos Epitaph
– Somewhere between 200BC and 100 AD, probably closer to the latter
– Either from Seikilos to his wife, Euterpe, or simply the epitaph of 

Seikilos, son of Euterpos

• The musical notation is understood
– Oldest complete piece of music



Seikilos Epitaph



How did we interpret this?

• So how does one go from the information on 
the left to the information on the right?



The Gold Bug (Edgar Allan Poe)

• Whut?

28



The Gold Bug (Edgar Allan Poe)

• Comparing letter frequency histograms
– If that fails, you can use frequencies of bigrams of 

characters (most frequent character pair: “TH”)
• http://norvig.com/mayzner.html

29

From Wikipedia:
Original images by 
Wikipedis users
Nandhp and Atar



The Gold Bug (Edgar Allan Poe)

• Substitution cipher; based on comparison of trivial surface 
level statistics
– Even works for music if its from the same genre

30
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More more complex things

• The Voynich manuscript
– In cipher?
– Still undeciphered
– What do we do?

Ca 1400-1430



Need to characterize the language

• Statistically model the structure of the 
language
– Model the probability distribution over a 

potentially infinite set, such that every entry gets 
assigned a realistic probability

• The probability must sum to 1.0 obviously

• Any ideas?



Need to characterize the language

• Statistically model the structure of the language

• In this course we will largely model language as Markov
– I.e. produced by a Markov process

– Hypothesis: Markov process models nicely capture the 
structure of the language

• And can be used to generate, categorize, compare languages etc.

• Lets understand Markov processes a little..





The story of Flider and Spy

• Flider the spider is at the far corner of the 
room, and Spy the fly is sleeping happily at the 
near corner



The story of Flider and Spy

• Flider only walks along edges
• She begins walking along 

one of the three edges at random
• She takes one minute to cover the distance 

from one corner to the other along any edge
• When she arrives at the new corner, she 

randomly chooses one of the three edges  and 
continues walking (she may even turn back)



The story of Flider and Spy

• What is the life expectancy of Spy?

?



Markov process

• Markov Process:  Does not matter how you 
got here, only matters where you are



The World as we model It

• Definition of Markov property:
– The state of the system has a Markov property if the 

future only depends on the present

• States can be defined to have this property

Where the spider can go next
only depends on where she is



Discrete-State Markov Process

• AKA Markov Chain
• The process (flider) can be in one of a number of states (corners)
• At any state the process can transition into another states, based on a 

probability distribution that is only dependent on the current state

1 2

3 4

5 6

7 8

1 2 3 5 4 6 7 8



Discrete-State Markov Process

• AKA Markov Chain
• The process (flider) can be in one of a number of states (corners)
• At any state the process can transition into another states, based on a 

probability distribution that is only dependent on the current state

1 2

3 4

5 6

7 8

1 2 3 5 4 6 7 8

What characterizes this process?
a) Number of states
b) The complete set of transition probabilities P(Si|Sj) that determine

the probability with which the process transitions to Si, when its in Sj

What is the complete set of transition probabilities P(Si|Sj) in this example?



Discrete-State Markov Process

• AKA Markov Chain
• The process (flider) can be in one of a number of states (corners)
• At any state the process can transition into another states, based on a 

probability distribution that is only dependent on the current state

1 2

3 4

5 6

7 8

1 2 3 5 4 6 7 8

What characterizes this process?
a) Number of states
b) The complete set of transition probabilities P(Si|Sj) that determine

the probability with which the process transitions to Si, when its in Sj

Is there a different way of characterizing this process, which is also 
Markov?



An alternate Markov representation

• A Markov process definition may not be 
unique!
– The same set of outcomes may be derived from 

multiple processes!

s3 s2 s1 s0

1.0

1.0

1/3 2/3

1/3
2/3



The absorbing state

• What happens when Flider catches Spy?
– There‘s no more wandering to be done

– This is an absorbing state with self-transition 
probability = 1

s3 s2 s1 s0

1.0

1.0

1/3 2/3

1/3
2/3



Introducing….  Glider!!

• Glider, Flider’s brother, never turns around during his wanderings
– On arriving at any corner, he chooses one of the two “forward” paths 

randomly.
• The future possibilities depend on the edge he arrived from

– Is he Markovian?



Introducing….  Rider!!

• Rider, Glider’s picky twin is even more fastidious
– She considers his past two corners before choosing 

the next one to go to.
– Is she Markovian?



Introducing….  Rider!!

• Schneider considers every place he’s been, and 
the order in which he’s been there, since he was 
born!
– Is he Markovian?



Introducing.. The “information” 
state

• By appropriately defining an information 
state, any discrete process can be modelled as 
Markov

• Simply modelling a process as Markov imparts 
no new insight into its structure!!



Need to characterize the language

• Statistically model the structure of the language

• In this course we will largely model language as Markov
– I.e. produced by a Markov process

– Hypothesis: Markov process models nicely capture the 
structure of the language

• And can be used to generate, categorize, compare languages etc.

• Lets understand Markov processes a little..



Need to characterize the language

• Statistically model the structure of the language

• In this course we will largely model language as Markov
– I.e. produced by a Markov process

– Hypothesis: Markov process models nicely capture the 
structure of the language

• And can be used to generate, categorize, compare languages etc.

• Lets understand Markov processes a little..

Only if you define the information state properly



• An on that happy note….



The shortest path algorithm

• What is the shortest path from the red to the 
black node?
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Dijkstra’s Algorithm

• Set the cost of the initial node to 0 and all other 
nodes to infinity

• Start at the initial node
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Dijkstra’s Algorithm

• “Expand” the initial node out along all 
outgoing paths

• At the destination nodes, record the cost
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Dijkstra’s Algorithm

• Mark initial node as “done”
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Dijkstra’s Algorithm

• Select the node with the lowest cost
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Dijkstra’s Algorithm

• “Expand” it along all outgoing edges
• Node path costs at destination nodes
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Dijkstra’s Algorithm

• Mark node as “done”
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Dijkstra’s Algorithm

• Select the node with the lowest cost
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Dijkstra’s Algorithm

• Expand it out as before
• What do we do when an expansion arrives at a node that 

already has a cost assigned to it?
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Dijkstra’s Algorithm

• Retain the lower of the current cost at the node 
and the cost of the expanded incoming edge
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Dijkstra’s Algorithm

• Retain the lower of the current cost at the node 
and the cost of the expanded incoming edge

1

2

2

1

1
3

2

4

2

1

1 2

1

2
1

2

2

1

2
2

1

?



Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm

1

2

2

1

1
3

2

4

2

1

1 2

1

2
1

2

2

1

2
2

1

?



Dijkstra’s Algorithm
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Dijkstra’s Algorithm

1

2

2

1

1
3

2

4

2

1

1 2

1

2
1

2

2

1

2
2

1

?

• When the least cost node is the target node, we’re done
• We have the cost of the shortest path from the red to the 

black node



A variation on the problem

• When the graph is topologically sorted..
– Assumption:  No nodes before the identified source node

– In practice, we can “kill” all earlier nodes and their 
outgoing edges without affecting the result
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A variation on the problem

• Start from the source node  
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A variation on the problem
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• Start from the source node 
• Going left to right, for each subsequent node, 

retain the lowest incoming cost 
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A variation on the problem
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Is this graph topologically sorted?

• Nodes on each column only connect to the 
nodes in the previous column(s) 



Is this graph topologically sorted?

• Nodes on each column only connect to the 
nodes in the previous column(s) 

• The sorted best path algorithm applies!
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Shortest path algorithm

• Order of evaluation to find the shortest path 
between the given source and destination
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Shortest path algorithm

• Order of evaluation to find the shortest path 
between the given source and destination



Composing directed graphs

• Two “product” of two graphs
– Each vertex on the child graph represents an unordered pair of 

vertices from the parent graphs
– Two vertices on the child graph are connected by an edge if 

corresponding vertices in the parent graphs are also connected
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• Two “product” of two graphs
– Each vertex on the child graph represents an unordered pair of 
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Composing graphs

• A graph and a linear graph

aa c

bb

11 22 33 44



Composing graphs

• A graph and a linear graph

11 22 33 44a cbb



The Trellis

• The composition of a directed graph and a 
linear graph results in a trellis
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Best Path Through The Trellis

• The composition of a directed graph and a 
linear graph results in a trellis
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Best Path Through The Trellis

• You just saw the Viterbi algorithm!!
• Again, the best path conforms to sequential 

constraints imposed by both parents
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The Trellis

• What are the edge and node costs?
– Cost(node(a,3)) = f(a,3)
– Cost(edge(a3->b=3) = g(edge(a->b), edge(3->4))

11 22
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Viterbi algorithm

• Assuming graph 1 (vertical) has N nodes (indexed 1..N) and graph 2 
(linear horizontal) has M nodes (indexed 1..M)
– Will not specify how node and edge costs on trellis are derived (for 

later)
– Note – referring to “indexed” rather than labeled; we will use numeric 

indices for both parent graphs for convenience. In the child graph, a 
node label  i,j refers to a node composed from node number i of 
parent graph 1, and node number j of parent graph j

• Case 1: 
– Parent (vertical) graph 1 constraint: all paths must start at node 1 and 

terminate at node “n”
– All paths through parent graph 2 must start at node 1 and terminate at 

node M   



CASE 1

• Require best path from red to yellow nodes

11 22

aa
cc

bb

33 44



Viterbi algorithm
• Initialize: 

Cost[1:M, 1:N] = infty

Bestpredecessor[1:M, 1:N] = null

• Algorithm:

Cost[1,1] = nodecost(node(1,1))

for i = 2:M

for j = 1:N

BP = argmin_k(Cost[i-1,k] + edgecost((i-1,k),(i,j)))

Cost[i,j] = Cost[i-1,BP] + edgecost((i-1,BP),(i,j)) + nodecost(i,j)

Bestpredecessor[i,j] = BP

• Final overall cost:

Finalcost = Cost[M,N]

• Actual sequence of states (from parent 1):

State[M] = N

for i = M downto 2

State[i-1] = Bestpredecessor(i, State[i])



Viterbi algorithm
• Initialize: 

Cost[1:M, 1:N] = infty

Bestpredecessor[1:M, 1:N] = null

• Algorithm:

Cost[1,1] = nodecost(node(1,1))

for i = 2:M

for j = 1:N

BP = argmin_k(Cost[i-1,k] + edgecost((i-1,k),(i,j)))

Cost[i,j] = Cost[i-1,BP] + edgecost((i-1,BP),(i,j)) + nodecost(i,j)

Bestpredecessor[i,j] = BP

• Final overall cost:

Finalcost = Cost[M,N]

• Actual sequence of states (from parent 1):

State[M] = N

for i = M downto 2

State[i-1] = Bestpredecessor(i, State[i])

We leave how you will implement
this argmin_k to your discretion.
Sometimes, one can take advantage of
the structure of graph 1 to reduce the
cost of this operation significantly.



Viterbi algorithm: argmin_k
• argmin_k(Cost[i-1,k] + edgecost((i-1,k),(i,j))):

bestcost = inf

BP = null

for k = 1:N

costk = Cost[i-1,k] + edgecost((i-1,k), (i,j))

if (costk < bestcost)

bestcost = costk

BP = k

return BP



CASE 2

• More generic:  Find best path from any red node to any
yellow node
– I.e.  Of all paths from a red node to a yellow node, find the 

best one

11 22

aa
cc

bb

33 44



Viterbi algorithm for Case 2
• Initialize: 

Cost[1:M, 1:N] = infty
Bestpredecessor[1:M, 1:N] = null
for i = 1:N Cost[1,i] = nodecost(node(1,i))

• Algorithm:
for i = 2:M

for j = 1:N
BP = argmin_k(Cost[i-1,k] + edgecost((i-1,k),(i,j)))
Cost[i,j] = Cost[i-1,BP] + edgecost((i-1,BP),(i,j)) + nodecost(i,j)
Bestpredecessor[i,j] = BP

• Final overall cost:
BestFinalNode = argmin_k(Cost[M,k])
Bestcost = Cost[M, BestFinalNode]

• Actual sequence of states (from parent 1):
State[M] = BestFinalNode
for i = M downto 2

State[i-1] = Bestpredecessor(i, State[i])



Lecture Outline

1. Markov models
2. Hidden Markov models
3. Viterbi algorithm



MARKOV MODELS



One View of Text

• Sequence of symbols (bytes, letters, 
characters, morphemes, words, …)
– Let Σ denote the set of symbols.

• Lots of possible sequences.  (Σ* is infinitely 
large.)

• Probability distributions over Σ*?



Trivial Distributions over Σ*

• Give probability 0 to sequences with length 
greater than B; uniform over the rest.

• Use data:  with N examples, give probability 
1/N to each observed sequence, 0 to the rest.

• What if we want every sequence to get some 
probability?
– Need a probabilistic model family and algorithms 

for constructing the model from data.



A History-Based Model

• Generate each word from left to right, 
conditioned on what came before it.



A History-Based Model

• Generate each word from left to right, 
conditioned on what came before it.

Note these guys..



Die / Dice

one die two dice



start

…

one die per history:

……



start I

…

one die per history:

……

history = start



start I want

…

one die per history:

……
history = start I



start I want a

…

one die per history:

……

history = start I want



start I want a flight

…

one die per history:

……

history = start I want a



start I want a flight to

…

one die per history:

……

history = start I want a flight



start I want a flight to Lisbon

…

one die per history:

……
history = start I want a flight to



start I want a flight to Lisbon .

…

one die per history:

……
history = start I want a flight to Lisbon



start I want a flight to Lisbon . stop

…

one die per history:

……
history = start I want a flight to Lisbon .



start I want a flight to Lisbon . stop

…

one die per history:

……
history = start I want a flight to Lisbon .

Is this process Markov?



A History-Based Model

• Generate each word from left to right, 
conditioned on what came before it.

• Very rich representational power!
• How many parameters?
• What is the probability of a sentence not seen 

in training data?



A Bag of Words Model

• Every word is independent of every other 
word.



start

one die:



start I

one die:



start I want

one die:



start I want a

one die:



start I want a flight

one die:



start I want a flight to

one die:



start I want a flight to Lisbon

one die:



start I want a flight to Lisbon .

one die:



start I want a flight to Lisbon . stop

one die:



A Bag of Words Model

• Every word is independent of every other word.
• Strong assumptions mean this model cannot fit 

the data very closely.
• How many parameters?
• What is the probability of a sentence not seen in 

training data?



A Bag of Words Model

• Every word is independent of every other word.
• Strong assumptions mean this model cannot fit 

the data very closely.
• How many parameters?
• What is the probability of a sentence not seen in 

training data?
Is this a Markov Model?



A Bag of Words Model

• Every word is independent of every other word.
• Strong assumptions mean this model cannot fit 

the data very closely.
• How many parameters?
• What is the probability of a sentence not seen in 

training data? Is this a Markov Model?
What is the information state?

Is there an absorbing state?



The Markov Model

• All incoming edges to a word wi carry the 
same probability P(wi)

start

w1

stop

w2

w5 w6

w3 w4



First Order Markov Model

• Happy medium?

• Condition on the most recent symbol in 
history.



start

…

one die per history:

……



start I

…

one die per history:

……
history = start



start I want

…

one die per history:

……

history = I



start I want a

…

one die per history:

……
history = want



start I want a flight

…

one die per history:

……

history = a



start I want a flight to

…

one die per history:

……
history = flight



start I want a flight to Lisbon

…

one die per history:

……
history = to



start I want a flight to Lisbon .

…

one die per history:

……
history = Lisbon



start I want a flight to Lisbon . stop

…

one die per history:

……

history = .



First Order Markov Model

• Happy medium?

• Condition on the most recent symbol in 
history.

• Independence assumptions?
• Number of parameters?
• Sentences not seen in training?



Markov Model

• Incomplete figure,  but lets simplify it

<s> </s>

<s>w1 w1w1 w2w1

<s>w2 w1w2 w2w2

<s>w3 w1w3 w2w3

w3w1

w3w2

w3w3



Markov Model

• What are the outgoing probabilities on the 
edges?

<s> </s>

w1

w2

w3



mth Order Markov Models

bag of words entire historymth order Markov

0 m ∞

fewer parameters

stronger independence assumptions
richer expressive power



• The complete tree of sentences for a two-word language

The language as a tree

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

Assuming a two-word
vocabulary: “sing” and
“song”



sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>
P(</s>|<s>)

With probabilities
attached on each edge.
This is an infinitely deep Markov model

The environment state for
any word is implicit in the position
of the state



Considering the effect of N-gram 
assumptions

• Lets sequentially consider the effect of the 
unigram, bigram and higher-order 
assumptions



The two-word example as a full tree with a unigram LM

sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>
P(</s>)



sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s><s>
P(</s>)



sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s><s>
P(</s>)



sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s><s>
P(</s>)



sing

song

</s><s>
P(</s>)

The two-word example with a unigram LM



sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s><s>

 The structure is recursive and can be collapsed

The two-word example as a full tree with a bigram LM

P(</s>|<s>)



sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s><s>
P(</s>|<s>)



sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

sing

song

</s><s>
P(</s>|<s>)

P(song | song)

P(sing | sing)



sing

song

</s>

P(song | song)

<s>

P(sing | sing)

P(</s> | <s>)

The two-word example with a bigram LM



sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

 The structure is recursive and can be collapsed

The two-word example as a full tree with a trigram LM



sing

song

sing

song

sing

song

<s>

sing

song

sing

song

sing

song

sing

song

</s>

P(sing|sing sing)
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P(song|song song)



sing

song
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song

sing

song

<s> </s>
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sing

song

sing

song

sing

song

<s> </s>

P(sing|sing sing)

P
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o
n

g
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in
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(sin

g
|sin

g
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P
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in
g

)

P(song|song song)

Trigram Markov Model
for a vocabulary of two words



Generating Text

• Start at <s>
• Randomly choose one of the outgoing edges 

according to their probability
• Stop producing text when you hit </s>



Example

• Unigram model estimated on 2.8M words of 
American political blog text.

this trying our putting and funny
and among it herring it obama
but certainly foreign my
c on byron again but from i
i so and i chuck yeah the as but but republicans if 
this stay oh so or it mccain bush npr this with what 
and they right i while because obama



Example

• Bigram model estimated on 2.8M 
words of American political blog text.

the lack of the senator mccain hadn t keep this story 
backwards
while showering praise of the kind of gop weakness
it was mistaken for american economist anywhere in the 
white house press hounded the absence of those he s as 
a wide variety of this election day after the candidate 
b richardson was polled ri in hempstead moderated by 
the convention that he had zero wall street journal 
argues sounds like you may be the primary
but even close the bill told c e to take the obama on 
the public schools and romney
fred flinstone s see how a lick skillet road it s 
little sexist remarks



Example

• Trigram model estimated on 2.8M words of 
American political blog text.

as i can pin them all none of them want to bet that 
any of the might be
conservatism unleashed into the privacy rule book and 

when told about what paul
fans organized another massive fundraising initiative 

yesterday and i don t know what the rams supposedly 
want ooh
but she did but still victory dinner
alone among republicans there are probably best not 

all of the fundamentalist community
asked for an independent maverick now for 

crystallizing in one especially embarrassing



Example

• 5-gram model estimated on 2.8M 
words of American political blog text.

he realizes fully how shallow and insincere 
conservative behavior has been he realizes that there 
is little way to change the situation
this recent arianna huffington item about mccain

issuing heartfelt denials of things that were actually 
true or for that matter about the shia sunni split and 
which side iran was on would get confused about this 
any more than someone with any knowledge of us politics 
would get confused about whether neo confederates were 
likely to be supporting the socialist workers party
at the end of the world and i m not especially 

discouraged now that newsweek shows obama leading by 
three now



Example

• 100-gram model estimated on 2.8M 
words of American political blog text.

and it would be the work of many hands to catalogue all 
the ridiculous pronouncements made by this man since his 
long train of predictions about the middle east has been 
gaudily disastrously stupefyingly misinformed just the 
buffoon it seems for the new york times to award with a 
guest column for if you object to the nyt rewarding 
failure in quite this way then you re intolerant according 
to the times editorial page editor andrew rosenthal 
rosenthal doesn t seem to recognize that his choice of 
adjectives to describe kristol serious respected are in 
fact precisely what is at issue for those whom he 
dismisses as having a fear of opposing views



N-Gram Models

Pros
• Easily understood 

linguistic formalism.
• Fully generative.
• Algorithms:

– calculate probability of a 
sequence

– choose a sequence from 
a set

– training

Cons
• Obviously inaccurate 

linguistic formalism.
• As N grows, data 

sparseness becomes a 
problem.
– Smoothing is a black art.

• How to deal with 
unknown words?



N-Gram Models

Pros
• Easily understood 

linguistic formalism.
• Fully generative.
• Algorithms:

– calculate probability of a 
sequence

– choose a sequence from 
a set

– training

Cons
• Obviously inaccurate 

linguistic formalism.
• As N grows, data 

sparseness becomes a 
problem.
– Smoothing is a black art.

• How to deal with 
unknown words?



Calculating the Probability 
of a Sequence

• Let n be the length of the sequence and m be 
the length of the history.

• For every consecutive (m+1) words wi … wi+m, 
look up p(wi+m | wi … wi+m-1).

• Look up p(stop | wn-m … wn).
• Multiply these quantities together.



Choosing a Sequence from a Set

• Calculate the probability of each sequence in 
the set.

• Choose the one that has the highest 
probability.



Training

• Maximum likelihood estimation by relative 
frequencies:

unigram

bigram

general

trigram



Note about Current Research

• In the past few years, “web-scale” n-gram models have 
become popular.
– More data always seem to make language models better (Brants

et al., 2007, inter alia)

• A number of recent research efforts seek to make the 
construction and use of language models very efficient.
– Runtime:  MapReduce architectures (e.g., Lin & Dyer, 2010)
– Memory:  compression (e.g., Heafield, 2011)

• Neural language models
– Too many to cite
– Not really a “fixed” sized history (n) anymore



Sequence Models as Components

• Typically we care about a sequence together 
with something else.
– Analysis:  sequence in, predict “something else.”
– Generation:  “something else in,” sequence out.

• Sequence models are useful components in 
both scenarios.



Noisy Channel

true Y X

source

channel

decoding rule:



Sequence Model as Source
• speech recognition 

(Jelinek, 1997)
• machine translation 

(Brown et al., 1993)
• optical character 

recognition (Kolak and 
Resnik, 2002)

• spelling and 
punctuation correction 
(Kernighan et al., 
1990)

true Y X

source

channel

decoding rule:

Desired output 
sequence

Observed
sequence



Sequence Model as Channel
• text categorization
• language identification
• information retrieval 

(Ponte and Croft, 1998; 
Berger and Lafferty, 
1999)

• Sentence compression 
(Knight and Marcu, 
2002)

• Question to search 
query (Radev et al., 
2001)

true Y X

source

channel

decoding rule:

Desired output Observed
sequence



It’s Hard to Beat N-Grams!

• They are very fast to work with. They fit the 
data really, really well.

• Improvements for some specific problems
follow from:
– task-specific knowledge
– domain knowledge (e.g., linguistics)



Class-Based Sequence Models

• From Brown et al. (1990):

• “cl” is a deterministic function from words to a 
smaller set of classes.
– Each word only gets one class; known in advance.
– Discovered from data using a clustering algorithm.



start



start C53

…

one “next class” die per class:

……
history = start



start C53

…

one word die per class:

……

I

Each word appears on 
only one of the word dice.

class = C53



start C53

I

C23

…

one “next class” die per class:

……

history = C53



start C53

I

C23

…

one word die per class:

……

want

class = C23



start C53

I

C23

…

one “next class” die per class:

……

want

C2

history = C23



start C53

I

C23

…

one word die per class:

……

want

C2

a

class = C2



start C53

I

C23

…

one “next class” die per class:

……

want

C2

a

C5

history = C2



start C53

I

C23

…

one word die per class:

……

want

C2

flight

C5

a

class = C5



Class-Based Sequence Models

• From Brown et al. (1990):

• Independence assumptions?
• Number of parameters?
• Generalization ability?



Markov Model

• Each time a class is visited,  draw a word from 
the class

start stop

C1

C2

C3

P(W|C1)

P(W|C2)

P(W|C3)



Generating Text

• Note the distinction between wandering 
through the states and producing the text

start stop

<s> </s>w1 w2 w3 w4 w5



Hidden Markov Model

• Consider now the situation where a word may belong to multiple classes
– E.g. if classes are Penn Bank labels,  “I” may be a cardinal number, noun, or 

personal pronoun
– In the limit P(W|C) is a distribution over all words

• All classes include all words, but differ in the probability with which they produce them

start stop

C1

C2

C3

P(W|C1)

P(W|C2)

P(W|C3)



Hidden Markov Model

• This is a hidden Markov model
– Also called a “stochastic function of a Markov chain”
– The process transitions through a state sequence
– From each state, it produces an observation
– We only see the observation but do not directly see the state

start start

C1

C2

C3

P(W|C1)

P(W|C2)

P(W|C3)



HMM: Generating Text

• We only get to observe the word sequence, 
but the actual state sequence is hidden to us

start stop

<s> </s>w1 w2 w3 w4 w5

State sequence

word sequence



Parameters of the HMM
• The state transition probabilities of the underlying Markov 

chain
– ௜ ௝

• Initial state probabilities
– What is the probability that at the very first instant, the process 

will be in state ௝

– Often denoted by ௝

• Emission probabilities
– ௜ ௝

• Note: we’ve switched from calling it a “class” to calling it a 
“state” since these are states of the Markov chain
– To conform to Markov Chain terminology



Decoding the state sequence

• Preliminary: Given all parameters of the HMM
– Transition probabilities, initial state probabilities, 

emission probabilities

• Problem:  Given a word sequence <s> w1 w2… 
</s>,  find the underlying state sequence

start stop

<s> </s>w1 w2 w3 w4 w5



Decoding the state sequence

start stop

<s> </s>w1 w2 w3 w4 w5

GIVEN THIS

FIND THIS



The graph view of the problem

• At the same time, the productions from the state sequence 
must conform to the structure of the observation
– I.e. wi must be followed by wi+1 with probability 1

<s> </s>w1 w2 w3 w4 w5

start stop

C1

C2

C3

• Any valid state sequence must conform to the transition 
structure imposed by the Markov model
– It must be a valid path through the Markov graph

1 1 1 1 1 1



The graph view of the problem

• The set of all combination of states and words can be 
represented as a combined graph that conforms to the 
restrictions of both graphs
– I.e. the composition of both graphs, which is a trellis..

<s> </s>w1 w2 w3 w4 w5

start stop

C1

C2

C3



The graph view of the problem

• The set of all combination of states and words can be 
represented as a combined graph that conforms to the 
restrictions of both graphs
– I.e. the composition of both graphs, which is a trellis..

<s> </s>w1 w2 w3 w4 w5

start stop



The graph view of the problem

• The set of all combination of states and words can be 
represented as a combined graph that conforms to the 
restrictions of both graphs
– I.e. the composition of both graphs, which is a trellis..

<s> </s>w1 w2 w3 w4 w5

start stop

Assuming a simpler model for clarity of illustration (first word must be
from red state, last word must be from green state)



The graph view of the problem

• The Trellis that composes the state graph and the observation 
graph

• Every state sequence through this trellis conforms to both, the 
Markov graph over states and the linear ordering of words

<s> </s>w1 w2 w3 w4 w5



Probabilities on the Trellis

• The “score” for combining a state and a word 
is the probability of emitting that word from 
the state

• The “score” for an edge is the product of the 
probabilities associated with edges in both 
graphs

• The “score” for a path through the trellis is 
now obtained by multiplying component node 
and edge probabilities



The graph view of the problem

• Trellis:  
• Trellis 

for ; 0 otherwise

<s> </s>w1 w2 w3 w4 w5



The graph view of the problem

• The score associated with any path is trivially seen to be 
, where ௜ is the i-th

state in the state sequence

<s> </s>w1 w2 w3 w4 w5



Probabilities on the Trellis

• Instead of probabilities, we will often work 
with log probabilities

• Instead of multiplying components along the 
paths, we can now add them as usual



The graph view of the problem

•

•

<s> </s>w1 w2 w3 w4 w5



The graph view of the problem

• The score associated with any path is trivially seen to be 

• This is the sum of the node and edge scores along the path

<s> </s>w1 w2 w3 w4 w5



Finding the state sequence

• Problem: Find the state sequence that best explains the word 
sequence

• Equivalent problem: Find the highest scoring path from the start 
(black) node to the final (yellow) node

• For this we can now use the Viterbi algorithm with one modification

<s> </s>w1 w2 w3 w4 w5



Viterbi algorithm
• Initialize: 

Score[1:M, 1:N] = -infty
Bestpredecessor[1:M, 1:N] = null

• Algorithm:
Score[1,1] = nodescore(node(1,1))
for i = 2:M

for j = 1:N
BP = argmax_k(Score[i-1,k] + edgescore((i-1,k),(i,j)))
Score[i,j] = Score[i-1,BP] + edgescore((i-1,BP),(i,j)) 

+ nodescore(i,j)
Bestpredecessor[i,j] = BP

• Final overall cost:
BestScore = Score[M,N]

• Actual sequence of states (from parent 1):
State[M] = N
for i = M downto 2

State[i-1] = Bestpredecessor(i, State[i])

Note: scores instead of cost
(Score = log probability)



Viterbi algorithm
• Initialize: 

Score[1:M, 1:N] = -infty
Bestpredecessor[1:M, 1:N] = null

• Algorithm:
Score[1,1] = nodescore(node(1,1))
for i = 2:M

for j = 1:N
BP = argmax_k(Score[i-1,k] + edgescore((i-1,k),(i,j)))
Score[i,j] = Score[i-1,BP] + edgescore((i-1,BP),(i,j)) 

+ nodescore(i,j)
Bestpredecessor[i,j] = BP

• Final overall cost:
BestScore = Score[M,N]

• Actual sequence of states (from parent 1):
State[M] = N
for i = M downto 2

State[i-1] = Bestpredecessor(i, State[i])

Note: scores instead of cost
(Score = log probability)

Note: argmax instead of argmin



Generalizing the approach

• Consider the case where the observed word 
sequence is uncertain
– Uncertain whether w3 was said or not
– But the presence or absence of w3 changes the 

interpretation of the sentence
– How to find the most likely state sequence

<s> w1 w2 [w3]  w4 w5 </s>



The uncertain observation graph

• The observation sequence can now be 
modeled by this modified graph
– Note the probabilities

• The 0.5 may be replaced by any other value indicative 
of our certainty in the occurrence of the word

<s> </s>w1 w2 w3 w4 w5

1 1 0.5

0.5

1 1 1



The modified trellis

• Trellis obtained by composing Markov graph and observation 
graph

• Permits state sequences that skip the uncertain word

<s> </s>w1 w2 w3 w4 w5



The modified trellis

<s> </s>w1 w2 w3 w4 w5

•

•

– Note:  ௞ ௟ for words that are not connected



The modified trellis

• The Viterbi algorithm must be modified for this problem
– How?

<s> </s>w1 w2 w3 w4 w5



Generalizing the approach

• What is the word graph for this problem?

Spare him not , kill him   OR Spare him , not kill him



Lecture Outline

 Markov models
2. Hidden Markov models
3. Viterbi algorithm



HIDDEN MARKOV MODELS



Hidden Markov Model

• A model over sequences of symbols, but there is 
missing information associated with each symbol:  
its “state.”
– Assume a finite set of possible states, Λ.

• A joint model over the observable symbols and 
their hidden/latent/unknown classes.



start C53

…

one “next class” die per class:

……
history = start



start C53

…

one word die per class:

……

I

The only change to the 
class-based model is that 
now, the different word 
dice can share words!

class = C53



start C53

I

C23

…

one “next class” die per class:

……
history = C53



start C53

I

C23

…

one word die per class:

……

want

class = C23



start C53

I

C23

…

one “next class” die per class:

……

want

C2

history = C23



start C53

I

C23

…

one word die per class:

……

want

C2

a

class = C2



start C53

I

C23

…

one “next class” die per class:

……

want

C2

a

C5

history = C2



start C53

I

C23

…

one word die per class:

……

want

C2

flight

C5

a

class = C5



Two Equivalent Stories

• First, as shown:  transition, emit, transition, 
emit, transition, emit.

• Second:
– Generate the sequence of transitions.  Essentially, 

a Markov model on classes.
– Stochastically replace each class with a word. 



Uses of HMMs in NLP

• Part-of-speech tagging (Church, 1988; Brants, 
2000)

• Named entity recognition (Bikel et al., 1999) and 
other information extraction tasks

• Text chunking and shallow parsing (Ramshaw and 
Marcus, 1995)

• Word alignment in parallel text (Vogel et al., 
1996)

• Also popular in computational biology and central 
to speech recognition.



Part of Speech Tagging

After paying the medical bills , Frances was nearly broke .
RB VBG DT JJ NNS ,     NNP VBZ RB JJ .

• Adverb (RB)
• Verb (VBG, VBZ, and others)
• Determiner (DT)
• Adjective (JJ)
• Noun (NN, NNS, NNP, and others)
• Punctuation (., ,, and others)



Named Entity Recognition

With Commander Chris Ferguson at the helm , 

Atlantis touched down at Kennedy Space Center .



Named Entity Recognition

With Commander Chris Ferguson at the helm , 

Atlantis touched down at Kennedy Space Center .

• What makes this hard?

B-person I-person I-personO O O O O

OOOOB-space-shuttle B-place I-place I-place



Word Alignment
Mr. President , Noah’s ark was filled not with production factors , but with living creatures.

NULL Noahs Arche war nicht voller Productionsfactoren , sondern Geschöpfe .



Word Alignment
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Word Alignment
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Word Alignment
Mr. President , Noah’s ark was filled not with production factors , but with living creatures.

NULL Noahs Arche war nicht voller Productionsfactoren , sondern Geschöpfe .



Word Alignment
Mr. President , Noah’s ark was filled not with production factors , but with living creatures.

NULL Noahs Arche war nicht voller Productionsfactoren , sondern Geschöpfe .



Hidden Markov Model

• A model over sequences of symbols, but there is 
missing information associated with each symbol:  
its “state.”
– Assume a finite set of possible states, Λ.

• A joint model over the observable symbols and 
their hidden/latent/unknown classes.
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VITERBI ALGORITHM



Algorithms for HMMs

Given the HMM and a sequence:
1. The most probable state sequence?
2. The probability of the word sequence?
3. The probability distribution over states, for 

each word?
4. Minimum risk sequence
Given states and sequences, or just states:
5. The parameters of the HMM (γ and η)?



Problem 1:  
Most Likely State Sequence

• Input:  HMM (γ and η) and symbol sequence 
w.

• Output:

• Statistics view:  maximum a posteriori
inference

• Computational view:  discrete, combinatorial 
optimization    



Example
I suspect the present forecast is pessimistic .

CD JJ DT JJ NN NNS JJ .

NN NN JJ NN VB VBZ

NNP VB NN RB VBD

PRP VBP NNP VB VBN

VBP VBP VBP

4 4 5 5 5 2 1 1

4,000 possible state sequences!



Naïve Solutions

• List all the possibilities in Λn.
– Correct.
– Inefficient.

• Work left to right and greedily pick the best si
at each point, based on si-1 and wi.
– Not correct; solution may not be equal to:

– But fast!



Interactions

• Each word’s label depends on the word, and 
nearby labels.

• But given adjacent labels, others do not matter.

I suspect the present forecast is pessimistic .

CD JJ DT JJ NN NNS JJ .

NN NN JJ NN VB VBZ

NNP VB NN RB VBD

PRP VBP NNP VB VBN

VBP VBP VBP

(arrows show most preferred label by each neighbor)



Base Case:  Last Label

start w1 w2 w3 … wn-1 wn stop

σ1

σ2

σ3 ✓
σ4

︙
σ|Λ|

Of course, we do not actually know sn-1!



Recurrence

• If I knew the score of every sequence s1 … sn-1, 
I could reason easily about sn.
– But my decision about sn would only depend on sn-

1!

• So I really only need to know the score of the 
best sequence ending in each sn-1.

• Think of that as some “precalculation” that 
happens before I think about sn.



Recurrence

• Assume we have the scores for all prefixes of 
the current state sequence.
– One score for each possible last-state of the 

prefix.



Recurrence

• The recurrence “bottoms out” at start.
• This leads to a simple algorithm for calculating 

all the scores.



Viterbi Algorithm (Scores Only)

• For every σ in Λ, let:

• For i = 2 to n – 1, for every σ in Λ:

• For every σ in Λ:

• Claim:



Exploiting Distributivity



I suspect the present forecast is pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-
12

3E-12 7E-23

NN 4E-6 2E-10 1E-
13

6E-13 4E-16

NNP 1E-5 4E-
13

NNS 1E-
21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-
14

4E-15 9E-19

6 -



Not Quite There

• As described, this algorithm only lets us 
calculate the probability of the best label 
sequence.

• It does not recover the best sequence!



Understanding the Scores

• scorei(σ) is the score of the best sequence 
labeling up through wi, ignoring what comes 
later.

• Similar trick as before:  if I know what si+1 is, 
then I can use the scores to choose si.

• Solution:  keep backpointers.



I suspect the present forecast is pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-
12

3E-12 7E-23

NN 4E-6 2E-10 1E-
13

6E-13 4E-16

NNP 1E-5 4E-
13

NNS 1E-
21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-
14

4E-15 9E-19

6 -



I suspect the present forecast is pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-
12

3E-12 7E-23

NN 4E-6 2E-10 1E-
13

6E-13 4E-16

NNP 1E-5 4E-
13

NNS 1E-
21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-
14

4E-15 9E-19

6 -



Viterbi Algorithm

• For every σ in Λ, let:

• For i = 2 to n – 1, for every σ in Λ:

• For every σ in Λ:



Viterbi Algorithm:  Backtrace

• After calculating all score and bp values, start 
by choosing sn to maximize scoren.

• Then let sn-1 = bpn(sn).

• In general, si-1 = bpi(si).



Another Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22



Another Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22



General Idea:  Dynamic Programming

• Use a table data structure to store partial 
quantities that will be reused many times.
– Optimal substructure:  best solution to a problem 

relies on best solutions to its (similar-looking) 
subproblems.

– Overlapping subproblems:  reuse a small number 
of quantities many times

• Examples:  Viterbi, minimum Levenshtein 
distance, Dijkstra’s shortest path algorithm, …



A Different View:  Best Path



Asymptotic Analysis

Memory:
• The table is n |Λ|.

Runtime:
• Each cell in the table requires O(|Λ|) 

operations.
• Total runtime is O(n|Λ|2).
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