
HMM	Review

start

start C53

start C53

I

start C53

I

C23

start C53

I

C23

want

start C53

I

C23

want

C2

start C53

I

C23

want

C2

a

start C53

I

C23

want

C2

a

C5

start C53

I

C23

want

C2

flight

C5

a

HMM	as	FSA

• Each	time	a	class	is	visited,		draw	a	word	from	
the	class

start stop

C1

C2

C3

P(W|C1)

P(W|C2)

P(W|C3)

HMM

start stop

<s> </s>w1 w2 w3 w4 w5

Parameters	of	the	HMM

• The	state	transition	probabilities	of	the	
underlying	Markov	chain	on	latent	states
– 𝑃(𝑆$|𝑆&)

• Initial	state	probabilities
– What	is	the	probability	that	at	the	very	first	
instant,	the	process	will	be	in	state	𝑆&

– Often	denoted	by	𝜋(𝑆&)

• Emission	probabilities
– 𝑃(𝑤$|𝑠&)

HMM

• We	only	observe	the	word	sequence	-- the	
state	sequence	is	a	latent	variable

start stop

<s> </s>w1 w2 w3 w4 w5

State sequence

word sequence

Decoding	the	state	sequence

• Preliminary:	Given	all	parameters	of	the	HMM
– Transition	probabilities,	initial	state	probabilities,	
emission	probabilities

• Problem:		Given	a	word	sequence	<s>	w1 w2…	
</s>,		find	the	underlying	state	sequence

start stop

<s> </s>w1 w2 w3 w4 w5

Decoding	the	state	sequence

• Preliminary:	Given	all	parameters	of	the	HMM
– Transition	probabilities,	initial	state	probabilities,	
emission	probabilities

• Problem:		Given	a	word	sequence	<s>	w1 w2…	
</s>,		find	the	state	sequence	with	highest	
probability

start stop

<s> </s>w1 w2 w3 w4 w5

Decoding	the	state	sequence

start stop

<s> </s>w1 w2 w3 w4 w5

GIVEN THIS

FIND THIS

The	graph	view	of	the	problem

• At	the	same	time,	the	productions	from	the	state	sequence	
must	conform	to	the	structure	of	the	observation
– i.e.	wi must	be	followed	by	wi+1 with	probability	1	and	each	emission	

will	be	scored	with	the	corresponding	emission	prob

start stop

C1

C2

C3

• Any	valid	state	sequence	must	conform	to	the	transition	
structure	imposed	by	the	Markov	model
– It	must	be	a	valid	path	through	the	Markov	graph	(i.e.	no	zero	prob

transitions)	and	it	will	be	scored	by	the	Markov	model’s	probs

The	graph	view	of	the	problem

• The	set	of	all	combination	of	states	and	words	can	be	
represented	as	a	combined	graph	that	conforms	to	the	
restrictions	of	both	graphs
– i.e.	the	composition	of	both	graphs,	which	is	a	trellis..

<s> </s>w1 w2 w3 w4 w5

start stop

C1

C2

C3

⨂

The	graph	view	of	the	problem

• The	set	of	all	combination	of	states	and	words	can	be	
represented	as	a	combined	graph	that	conforms	to	the	
restrictions	of	both	graphs
– I.e.	the	composition	of	both	graphs,	which	is	a	trellis..

<s> </s>w1 w2 w3 w4 w5

⨂

start stop

The	graph	view	of	the	problem

• The	set	of	all	combination	of	states	and	words	can	be	
represented	as	a	combined	graph	that	conforms	to	the	
restrictions	of	both	graphs
– I.e.	the	composition	of	both	graphs,	which	is	a	trellis..

<s> </s>w1 w2 w3 w4 w5

⨂

start stop

Assuming a simpler model for clarity of illustration (first word must be
from red state, last word must be from green state)

The	graph	view	of	the	problem

• The	Trellis	that	composes	the	state	graph	and	the	observation	
graph

• Every	state	sequence	through	this	trellis	conforms	to	both,	the	
Markov	graph	over	states	and	the	linear	ordering	of	words

<s> </s>w1 w2 w3 w4 w5

Probabilities	on	the	Trellis

• The	“score”	for	combining	a	state	and	a	word	
is	the	probability	of	emitting	that	word	from	
the	state

• The	“score”	for	an	edge	is	the	product	of	the	
probabilities	associated	with	edges	in	both	
graphs

• The	“score”	for	a	path	through	the	trellis	is	
now	obtained	by	multiplying	component	node	
and	edge	probabilities

The	graph	view	of	the	problem

• Trellis:		𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒(𝑠, 𝑤) 	= 		𝑃(𝑤|𝑠)
• Trellis	𝐸𝑑𝑔𝑒𝑠𝑐𝑜𝑟𝑒(𝑠$, 𝑠&) = 		𝑃(𝑠&|𝑠$)	

<s> </s>w1 w2 w3 w4 w5

The	graph	view	of	the	problem

• As	defined,	the	score	associated	with	a	path	in	the	trellis	is	its	
joint	prob under	the	generative	model:	
																𝑃 𝑠𝑡𝑎𝑟𝑡, < 𝑠 >, 𝑠;, 𝑤;, 𝑠<, 𝑤<, … , 𝑠𝑡𝑜𝑝,</𝑠 >

<s> </s>w1 w2 w3 w4 w5

Probabilities	on	the	Trellis

• Instead	of	probabilities,	we	will	often	work	
with	log	probabilities	(this	is	one	way	of	
dealing	with	underflow)

• So….	instead	of	multiplying	components	along	
the	paths,	we	add	them

The	graph	view	of	the	problem

• Trellis:		𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒 𝑠, 𝑤 = log𝑃 𝑤 𝑠 	
• Trellis	𝐸𝑑𝑔𝑒𝑠𝑐𝑜𝑟𝑒(𝑠$, 𝑠&) = 	 log 𝑃(𝑠&|𝑠$)

<s> </s>w1 w2 w3 w4 w5

The	graph	view	of	the	problem

• Path	score	=	log	𝑃 𝑠𝑡𝑎𝑟𝑡, < 𝑠 >, 𝑠;, 𝑤;, 𝑠<, 𝑤<, … , 𝑠𝑡𝑜𝑝,</𝑠 >

<s> </s>w1 w2 w3 w4 w5

Finding	the	state	sequence

• Problem:	Find	the	most	probable	state	sequence	given	the	word	
sequence

• Equivalent	problem:	Find	the	highest	scoring	path	from	the	start	
(black)	node	to	the	final	(yellow)	node

• For	this	we	can	now	use	the	Viterbi	algorithm

<s> </s>w1 w2 w3 w4 w5

Viterbi	algorithm
• Initialize:

Score[1:M, 1:N] = -infty
Bestpredecessor[1:M, 1:N] = null

• Algorithm:
Score[1,1] = nodescore(node(1,1))
for i = 2:M

for j = 1:N
BP = argmax_k(Score[i-1,k] + edgescore((i-1,k),(i,j)))
Score[i,j] = Score[i-1,BP] + edgescore((i-1,BP),(i,j))

+ nodescore(i,j)
Bestpredecessor[i,j] = BP

• Final overall cost:
BestScore = Score[M,N]

• Actual sequence of states (from parent 1):
State[M] = N
for i = M downto 2

State[i-1] = Bestpredecessor(i, State[i])

Generalizing	the	approach

• Consider	the	case	where	the	observed	word	
sequence	is	uncertain
– Uncertain	whether	w3	was	said	or	not
– But	the	presence	or	absence	of	w3	changes	the	
interpretation	of	the	sentence

– How	to	find	the	most	likely	state	sequence

<s> w1 w2 [w3] w4 w5 </s>

The	uncertain	observation	graph

• The	observation	sequence	can	now	be	
modeled	by	this	modified	graph
– Note	the	probabilities

• The	0.5	may	be	replaced	by	any	other	value	indicative	
of	our	certainty	in	the	occurrence	of	the	word

<s> </s>w1 w2 w3 w4 w5

1 1 0.5

0.5

1 1 1

The	modified	trellis

• Trellis	obtained	by	composing	Markov	graph	and	observation	
graph

• Permits	state	sequences	that	skip	the	uncertain	word

<s> </s>w1 w2 w3 w4 w5

The	modified	trellis

<s> </s>w1 w2 w3 w4 w5

• 𝑁𝑜𝑑𝑒𝑆𝑐𝑜𝑟𝑒(𝑠, 𝑤) 	= 	 log 𝑃(𝑤|𝑠)

• 𝐸𝑑𝑔𝑒𝑠𝑐𝑜𝑟𝑒 𝑠$, 𝑠& , 𝑤C, 𝑤D = log 𝑃(𝑠&|𝑠$) + log 𝑃(𝑤C|𝑤D)
– Note:		log 𝑃(𝑤C|𝑤D) = −∞ for	words	that	are	not	connected

The	modified	trellis

• The	Viterbi	algorithm	can	be	modified	to	solve	this	problem

<s> </s>w1 w2 w3 w4 w5

Generalizing	the	approach

• What	is	the	word	graph	for	this	problem?

Spare him not , kill him OR Spare him , not kill him

Uses	of	HMMs	in	NLP

• Part-of-speech	tagging	(Church,	1988;	Brants,	
2000)

• Named	entity	recognition	(Bikel et	al.,	1999)	and	
other	information	extraction	tasks

• Text	chunking	and	shallow	parsing	(Ramshaw and	
Marcus,	1995)

• Word	alignment	in	parallel	text	(Vogel	et	al.,	
1996)

• Also	popular	in	computational	biology	and	central	
to	speech	recognition.

Part	of	Speech	Tagging

After	paying	the	medical	bills	,	Frances	was	nearly	broke	.
RB VBG DT JJ NNS ,					NNP VBZ RB JJ .

• Adverb	(RB)
• Verb	(VBG,	VBZ,	and	others)
• Determiner	(DT)
• Adjective	(JJ)
• Noun	(NN,	NNS,	NNP,	and	others)
• Punctuation	(.,	,,	and	others)

Named	Entity	Recognition

With	Commander	Chris	Ferguson	at	the	helm	,	

Atlantis	touched	down	at	Kennedy	Space	Center	.

Named	Entity	Recognition

With	Commander	Chris	Ferguson	at	the	helm	,	

Atlantis	touched	down	at	Kennedy	Space	Center	.

• What	makes	this	hard?

B-person I-person I-personO O O O O

OOOOB-space-shuttle B-place I-place I-place

Word	Alignment
Mr.	President	,	Noah’s	ark	was	filled	not	with	production	factors	,	but	with	living	creatures.

NULL Noahs	Arche	war	nicht	voller	Productionsfactoren	,	sondern	Geschöpfe	.

Decoding	/	Inference

Hidden	Markov	Model

• A	model	over	sequences	of	symbols,	but	there	is	
missing	information	associated	with	each	symbol:		
its	“state.”
– Assume	a	finite	set	of	possible	states,	Λ.

• A	jointmodel	over	the	observable	symbols	and	
their	hidden/latent/unknown	classes.

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�1)

Key	Algorithms	for	HMMs

Given	the	HMM	and	a	sequence:
1. The	most	probable	state	sequence?
2. The	probability	of	the	word	sequence?
3. The	probability	distribution	over	states,	for	

each	word?
4. Minimum	risk	sequence
Given	states	and	sequences,	or	just	states:
5. The	parameters	of	the	HMM	(γ and	η)?

Problem	1:		
Most	Likely	State	Sequence

• Input:		HMM	(γ and	η)	and	symbol	sequence	
w.

• Output:

• Statistics	view:		maximum	a	posteriori
inference

• Computational	view:		discrete,	combinatorial	
optimization				

arg max
s

p(s | w,�,⇥)

Example
I suspect the	 present forecast is	 pessimistic .

CD JJ DT JJ NN NNS JJ .

NN NN JJ NN VB VBZ

NNP VB NN RB VBD

PRP VBP NNP VB VBN

VBP VBP VBP

4 4 5 5 5 2 1 1

4,000	possible	state	sequences!

Naïve	Solutions

• List	all	the	possibilities	in	Λn.
– Correct.
– Inefficient.

• Work	left	to	right	and	greedily	pick	the	best	si
at	each	point,	based	on	si-1 and	wi.
– Not	correct;	solution	may	not	be	equal	to:

– But	fast!
arg max

s
p(s | w,�,⇥)

Interactions

• Each	word’s	label	depends	on	the	word,	and	
nearby	labels.

• But	given	adjacent	labels,	others	do	not	matter.

I suspect the	 present forecast is	 pessimistic .

CD JJ DT JJ NN NNS JJ .

NN NN JJ NN VB VBZ

NNP VB NN RB VBD

PRP VBP NNP VB VBN

VBP VBP VBP

(arrows	show	most	preferred label	by	each	neighbor)

Base	Case:		Last	Label

start w1 w2 w3 … wn-1 wn stop

σ1
σ2
σ3 ✓
σ4
…
σ|Λ|

Of	course,	we	do	not	actually	know	sn-1!

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)� �(⇤ | sn�1)

Recurrence

• If	I	knew	the	score	of	every	sequence	s1 …	sn-1,	
I	could	reason	easily	about	sn.
– But	my	decision	about	sn would	only	depend	on	sn-

1!

• So	I	really	only	need	to	know	the	score	of	the	
best	sequence	ending	in	each sn-1.

• Think	of	that	as	some	“precalculation”	that	
happens	before	I	think	about	sn.

Recurrence

• Assume	we	have	the	scores	for	all	prefixes	of	
the	current	state	sequence.
– One	score	for	each	possible	last-state	of	the	prefix.

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scoren�1(⇤) = ⇥(wn�1 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�2(⇤⇥)

scoren�2(⇤) = ⇥(wn�2 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�3(⇤⇥)

...
...

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

Recurrence

• The	recurrence	“bottoms	out”	at	start.
• This	leads	to	a	simple	algorithm	for	calculating	
all	the	scores.

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scoren�1(⇤) = ⇥(wn�1 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�2(⇤⇥)

scoren�2(⇤) = ⇥(wn�2 | ⇤)�max
��

�(⇤ | ⇤⇥)� scoren�3(⇤⇥)

...
...

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

Viterbi	Algorithm	(Scores	Only)

• For	every	σ	in	Λ,	let:

• For	i	=	2	to	n	– 1,	for	every	σ	in	Λ:

• For	every	σ	in	Λ:

• Claim:

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scorei(⇤) = ⇥(wi | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scorei�1(⇤⇥)

max
s

p(s,w | �,⇥) = max
���

scoren(�)

Exploiting	Distributivity
max
�⇤�

scoren(⇤) = max
�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

= max
�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)

�⇥(wn�1 | ⇤⇥)� max
���⇤�

�(⇤⇥ | ⇤⇥⇥)� scoren�2(⇤⇥⇥)

= max
�⇤�

�(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)

�⇥(wn�1 | ⇤⇥)� max
���⇤�

�(⇤⇥ | ⇤⇥⇥)

�⇥(wn�2 | ⇤⇥⇥)� max
����⇤�

�(⇤⇥⇥ | ⇤⇥⇥⇥)� scoren�3(⇤⇥⇥⇥)

= max
�,��,���,����

�(stop | ⇤)� ⇥(wn | ⇤)� �(⇤ | ⇤⇥)

�⇥(wn�1 | ⇤⇥)� �(⇤⇥ | ⇤⇥⇥)
�⇥(wn�2 | ⇤⇥⇥)� �(⇤⇥⇥ | ⇤⇥⇥⇥)� scoren�3(⇤⇥⇥⇥)

= max
s⇤�n

n+1�

i=1

�(si | si�1)� ⇥(wi | si)

max
s

p(s,w | �,⇥) = max
���

scoren(�)

I suspect the	 present forecast is	 pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-12 3E-12 7E-23

NN 4E-6 2E-10 1E-13 6E-13 4E-16

NNP 1E-5 4E-13

NNS 1E-21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-14 4E-15 9E-19

VBZ 6E-18

. 2E-24

1 2 3 4 5 6 7 8

Not	Quite	There

• As	described,	this	algorithm	only	lets	us	
calculate	the	probability of	the	best	label	
sequence.

• It	does	not	recover	the	best	sequence!

Understanding	the	Scores

• scorei(σ)	is	the	score	of	the	best	sequence	
labeling	up	through	wi,	ignoring	what	comes	
later.

• Similar	trick	as	before:		if	I	know	what	si+1 is,	
then	I	can	use	the	scores	to	choose	si.

• Solution:		keep	backpointers.

scorei(�) = max
s1,...,si�1

p(s1, w1, s2, w2, . . . , si = �, wi)

I suspect the	 present forecast is	 pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-12 3E-12 7E-23

NN 4E-6 2E-10 1E-13 6E-13 4E-16

NNP 1E-5 4E-13

NNS 1E-21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-14 4E-15 9E-19

VBZ 6E-18

. 2E-24

I suspect the	 present forecast is	 pessimistic .

CD 3E-7

DT 3E-8

JJ 1E-9 1E-12 3E-12 7E-23

NN 4E-6 2E-10 1E-13 6E-13 4E-16

NNP 1E-5 4E-13

NNS 1E-21

PRP 4E-3

RB 2E-14

VB 6E-9 3E-15 2E-19

VBD 6E-18

VBN 4E-18

VBP 5E-7 4E-14 4E-15 9E-19

VBZ 6E-18

. 2E-24

Viterbi	Algorithm

• For	every	σ	in	Λ,	let:

• For	i	=	2	to	n	– 1,	for	every	σ	in	Λ:

• For	every	σ	in	Λ:

score1(⇤) = ⇥(w1 | ⇤)� �(⇤ | start)

scoren(⇤) = �(stop | ⇤)� ⇥(wn | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scoren�1(⇤⇥)

scorei(⇤) = ⇥(wi | ⇤)�max
��⇤�

�(⇤ | ⇤⇥)� scorei�1(⇤⇥)

bpi(⇥) = arg max
��⇤�

�(⇥ | ⇥⇥)� scorei�1(⇥⇥)

bpn(⇥) = arg max
��⇤�

�(⇥ | ⇥⇥)� scoren�1(⇥⇥)

Viterbi	Algorithm:		Backtrace

• After	calculating	all	score	and	bp	values,	start	
by	choosing	sn to	maximize	scoren.

• Then	let	sn-1 =	bpn(sn).

• In	general,	si-1 =	bpi(si).

Another	Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22

Another	Example
time flies like an arrow .

DT 10e-15 6e-21

IN 8e-13 1e-19

JJ 6e-14 2e-16

NN 2e-4 3e-16

NNP 1e-16

VB 2e-7 1e-14 1e-19

VBP 8e-16 4e-19

VBZ 2e-9 3e-18

. 1e-21 3e-17

, 4e-20 5e-22

Lecture	Outline

üViterbi	algorithm
2. Decoding	more	generally
3. Five	views

Inference

• Eventually,	you	need	to	run	your	structured	
predictor	on	test	data!

• For	sequence	labeling	and	segmentation	
models	with	very	local	interactions,	decoding	
is	usually	accomplished	by	something	“like”	
Viterbi	algorithm.

Random	Variables

• A	variable	whose	value	depends	on	chance
• Denoted	by	capital	letters:	X,	Y,	Z
• Associated	with	sets	of	possible	values:		Val(X)
• A	single	possible	value:		x	∈ Val(X)
• Probabilistic	modeling:		defining	distributions	
over	r.v.s

• There’s	more	than	one	way	to	map	your	
structured	prediction	problem	to	random	
variables!

Probabilistic	Inference	Problems
Given	values	for	some	random	variables	(X⊂ V)	…
• *Most	Probable	Explanation:		what	are	the	most	probable

values	of	the	rest	of	the	r.v.s V \ X?

(More	generally	…)
• *Maximum	A	Posteriori	(MAP):	what	are	the	most	probable	

values	of	some other	r.v.s,	Y⊂ (V \ X)?

• Random	sampling	from	the	posterior	over	values	of	Y
• Full	posterior	over	values	of	Y
• Marginal	probabilities	from	the	posterior	over	Y

• *Minimum	Bayes	risk:		What	is	the	Y with	the	lowest	
expected	cost?

• *Cost-augmented	decoding:		What	is	the	most	dangerous
value	of Y,	compared	to	true	y*?

These	do	not	
need	to	be	
probabilistic!
Change	
“most	
probable” to	
“maximum	
scoring.”

*Different	kinds	of	decoding.

V

X

Y

Approaches	to	Inference

inference

exact

variable	
elimination

dynamic	
programs

ILP

approximate

randomized

MCMC

Gibbs

importance	
sampling

randomized	
search

simulated	
annealing

deterministic

variational

mean	field

loopy	belief	
propagation

LP	
relaxations

dual	
decomp.

local	search

beam	search

red = hard inference
blue = soft inference
purple = both

Hidden	Markov	Model

• X and	Y are	both	sequences	of	symbols
– X is	a	sequence	from	the	vocabulary	Σ
– Y is	a	sequence	from	the	state	space	Λ

• Parameters:
– Transitions	γ including	γ(stop	|	s),	γ(s	|	start)
– Emissions	η

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�1)
p(Y = s,X = w) =

Hidden	Markov	Model

• The	joint	model’s	independence	assumptions	
are	easy	to	capture	with	a	Bayesian	network.

Y1

X1

Y0 Y2

X2

Y3

X3

Yn

Xn

stop…

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�1)

p(Y = s,X = w) =

Hidden	Markov	Model

• The	MPE/MAP	inference	problem	is	to	find	
the	most	probable	value	of	Y given	X	=	x.

Y1

X1 =	
w1

Y0 Y2

X2 =	
w2

Y3

X3 =	
w3

Yn

Xn =	
wn

stop…

p(start, s1, w1, s2, w2, . . . , sn, wnstop) =
n+1�

i=1

⇥(wi | si)� �(si | si�1)

p(Y = s,X = w) =

Hidden	Markov	Model

• The	MPE/MAP	inference	problem	is	to	find	
the	most	probable	value	of	Y given	X	=	x.

• Markov	network:

Y1

X1 =	
w1

Y0 Y2

X2 =	
w2

Y3

X3 =	
w3

Yn

Xn =	
wn

stop…

Markov	Network
• A	different	graphical	model	representation;	undirected.		
Vertices	are	still	r.v.s.

• Every	clique	C	in	the	graph	gets	a	local scoring	function	
φC that	maps	assignments	to	values.

• This	score	can	be	globally renormalized	to	obtain	a	
probabilistic	interpretation.		(Not	today.)

mulscore(x,y) =
Y

C2C
�C(⇧C(x,y))

addscore(x,y) =
X

C2C
log �C(⇧C(x,y))

Restriction	#1

1. The	score	function	needs	to	factor	locally.
– The	more	locally,	the	better!

score(x,y) =
X

C2C
log �C(⇧C(x,y))

Linear	Models

• Define	a	feature	vector	function	g that	maps	(x, y)	pairs	
into	d-dimensional	real	space.

• Score	is	linear	in	g(x, y).

• Results:		
– decoding	seeks	y to	maximize	the	score.
– learning	seeks	w to	…	do	something	we’ll	talk	about	later.

• Extremely	general!

score(x,y) = w⇤g(x,y)
y� = arg max

y⇥Yx

w⇤g(x,y)

Generic	Noisy	Channel	as	Linear	Model

• Of	course,	the	two	probability	terms	are	
typically	composed	of	“smaller” factors;	each	
can	be	understood	as	an	exponentiated	
weight.

ŷ = arg max
y

log (p(y) · p(x | y))

= arg max
y

log p(y) + log p(x | y)

= arg max
y

wy + wx|y

= arg max
y

w�g(x,y)

Max	Ent	Models	as	Linear	Models

ŷ = arg max
y

log p(y | x)

= arg max
y

log
expw�g(x,y)

z(x)
= arg max

y
w�g(x,y)� log z(x)

= arg max
y

w�g(x,y)

HMMs	as	Linear	Models

ŷ = arg max
y

log p(x,y)

= arg max
y

�
n⇤

i=1

log p(xi | yi) + log p(yi | yi�1)

⇥
+ log p(stop | yn)

= arg max
y

�
n⇤

i=1

wyi⇤xi + wyi�1⇥yi

⇥
+ wyn⇥stop

= arg max
y

⇤

y,x

wy⇤xfreq(y ⇥ x;y,x) +
⇤

y,y⇥

wy⇥y⇥ freq(y � y⌅;y)

= arg max
y

w⇧g(x,y)

Restrictions	#1,	#2

1. The	score	function	needs	to	factor	locally.
– The	more	locally,	the	better!

2. The	local	scoring	functions	need	to	be	linear	
in	features.

score(x,y) =
X

C2C
log �C(⇧C(x,y))

score(x,y) = w>g(x,y)

score(x,y) =
X

C2C
w>f(⇧C(x,y))

Running	Example

• IOB	sequence	labeling,	here	applied	to	NER
• Often	solved	with	HMMs,	CRFs,	M3Ns	…

(What	is	Not A	Linear	Model?)

• Probabilistic	models	with	hidden	variables,	
requiring	general	MAP	inference:

• Models	based	on	non-linear	kernels

arg max
y

p(y | x) = arg max
y

�

z

p(y,z | x)

arg max
y

w�g(x,y) = arg max
y

N�

i=1

�iK (�xi,yi⇥, �x,y⇥)

Lecture	Outline

üViterbi	algorithm
üDecoding	more	generally
3. Five	views

1.		Probabilistic	Graphical	Models

• View	the	linguistic	structure	as	a	collection	of	
random	variables	that	are	interdependent.

• Represent	interdependencies	as	a	directed	or	
undirected	graphical	model.

• Conditional	probability	tables	(BNs)	or	factors	
(MNs)	encode	the	probability	distribution.

• Use	standard	techniques	from	PGMs	to	
decode.

Inference	in	Graphical	Models

• General	algorithm	for	exact	MPE	inference:		
variable	elimination.
– Iteratively	solve	for	the	best	values	of	each	
variable	conditioned	on	values	of	“preceding”
neighbors.

– Then	trace	back.
– Challenge:		order	the	r.v.s for	efficiency!

The	Viterbi	algorithm	is	an	instance	of	
max-product	variable	elimination!

MAP	is	Linear	Decoding

• Bayesian	network:

• Markov	network:

• This	works	if	every	variable	is	in	X or	Y.

�

i

log p(xi | parents(Xi))

+
�

j

log p(yj | parents(Yj))

�

C

log �C ({xi}i�C , {yj}j�C)

Hidden	Markov	Model

• When	we	eliminate	Y1,	we	take	a	product	of	
three	relevant	factors.
• γ(Y1 |	start)
• η(w1 |	Y1),	reduced	to	the	observed	value	w1

• γ(Y2 |	Y1)

Y1

X1 =	
w1

Y0 Y2

X2 =	
w2

Y3

X3 =	
w3

Yn

Xn =	
wn

stop…

Factor	Representation

Y1

X1 =	
w1

Y0 Y2

X2 =	
w2

Y3

X3 =	
w3

Yn

Xn =	
wn

stop…

Y1 Y2 Y3 Yn…

Hidden	Markov	Model

• When	we	eliminate	Y1,	we	first	take	a	product	
of	two	factors	that	only	involve	Y1.

Y1 Y2 Y3 Yn…

y1
y2
…

y|Λ|
y1
y2
…

y|Λ|
reduced	η (x1 |	Y1)

γ(Y1 |	start)

Hidden	Markov	Model

• When	we	eliminate	Y1,	we	first	take	a	product	
of	two	factors	that	only	involve	Y1.

• This	is	the	Viterbi	probability	vector	for	Y1.

Y1 Y2 Y3 Yn…y1
y2
…

y|Λ|
φ1(Y1)

Hidden	Markov	Model

• When	we	eliminate	Y1,	we	first	take	a	product	
of	two	factors	that	only	involve	Y1.

• This	is	the	Viterbi	probability	vector	for	Y1.
• Eliminating	Y1 equates	to	solving	the	Viterbi	
probabilities	for	Y2.

Y1 Y2 Y3 Yn…y1
y2
…

y|Λ|
φ1(Y1)

y1

y2

…

y|Λ|
p(Y2 |	Y1)

Hidden	Markov	Model

• Product	of	all	factors	involving	Y1,	then	
reduce.
• φ2(Y2)	=	maxy∈Val(Y1) (φ1(y)⨉ p(Y2 |	y))
• This	factor	holds	Viterbi	probabilities	for	Y2.

Y2 Y3 Yn…

Y2

Hidden	Markov	Model

• When	we	eliminate	Y2,	we	take	a	product	of	
the	analogous	two	relevant	factors.

• Then	reduce.
• φ3(Y3)	=	maxy∈Val(Y2) (φ2(y)	⨉ p(Y3 |	y))

Y3 Yn…

Yn

Hidden	Markov	Model

• At	the	end,	we	have	one	final	factor	with	one	
row,	φn+1.

• This	is	the	score	of	the	best	sequence.
• Use	backtrace	to	recover	values.

Why	Think	This	Way?

• Easy	to	see	how	to	generalize	HMMs.
– More	evidence
– More	factors
– More	hidden	structure
– More	dependencies

• Probabilistic	interpretation	of	factors	is	not	
central	to	finding	the	“best” Y …
– Many	factors	are	not	conditional	probability	
tables.

Generalization	Example	1

• Each	word	also	depends	on	previous	state.

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5

Generalization	Example	2

• “Trigram” HMM

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5

Generalization	Example	3

• Aggregate	bigram	model	(Saul	and	Pereira,	
1997)

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5

Inference	in	Graphical	Models

• Remember:		more	edges	make	inference	more	
expensive.
– Fewer	edges	means	stronger	independence.

• Really	pleasant:

Inference	in	Graphical	Models

• Remember:		more	edges	make	inference	more	
expensive.
– Fewer	edges	means	stronger	independence.

• Really	unpleasant:

Decoding,	Continued

September	5,	2013

Lecture	Outline

üViterbi	algorithm
üDecoding	more	generally
3. Five	views

ü MPE/MAP	inference	in	a	graphical	model

2.		Polytopes

“Parts”

• Assume	that	feature	function	g breaks	down	
into	local	parts.

• Each	part	has	an	alphabet	of	possible	values.
– Decoding	is	choosing	values	for	all	parts,	with	
consistency	constraints.

– (In	the	graphical	models	view,	a	part	is	a	clique.)

g(x,y) =
#parts(x)�

i=1

f(�i(x,y))

Example

• One	part	per	word,	each	is	in	{B,	I,	O}
• No	features	look	at	multiple	parts

– Fast	inference
– Not	very	expressive

Example

• One	part	per	bigram,	each	is	in	{BB,	BI,	BO,	
IB,	II,	IO,	OB,	OO}

• Features	and	constraints	can	look	at	pairs	
– Slower	inference
– A	bit	more	expressive

Geometric	View

• Let	zi,π be	1	if	part	i takes	value	π and	0	
otherwise.

• z is	a	vector	in	{0,	1}N
– N	=	total	number	of	localized	part	values
– Each z is	a	vertex	of	the	unit	cube

Score	is	Linear	in	z

arg max
y

w⇥g(x,y) = arg max
y

w⇥
#parts(x)⇤

i=1

f(�i(x,y))

= arg max
y

w⇥
#parts(x)⇤

i=1

⇤

��Values(�i)

f(�)1{�i(x,y) = �}

= arg max
z�Zx

w⇥
#parts(x)⇤

i=1

⇤

��Values(�i)

f(�)zi,�

= arg max
z�Zx

w⇥Fxz

= arg max
z�Zx

�
w⇥Fx

⇥
z

not	really	
equal;	need	
to	transform	
back	to	get	y

Polyhedra

• Not	all	vertices	of	the	N-dimensional	unit	cube	
satisfy	the	constraints.
– E.g.,	can’t	have	z1,BI =	1 and	z2,BI =	1

• Sometimes	we	can	write	down	a	small	
(polynomial	number)	of	linear	constraints	on	
z.

• Result:		linear	objective,	linear	constraints,	
integer	constraints	…

Integer	Linear	Programming

• Very	easy	to	add	new	constraints	and	non-local	
features.

• Many	decoding	problems	have	been	mapped	to	
ILP	(sequence	labeling,	parsing,	…),	but	it’s	not	
always	trivial.	

• NP-hard	in	general.
– But	there	are	packages	that	often	work	well	in	
practice	(e.g.,	CPLEX)

– Specialized	algorithms	in	some	cases
– LP	relaxation	for	approximate	solutions

Remark

• Graphical	models	assumed	a	probabilistic	
interpretation
– Though	they	are	not	always	learned	using	a	
probabilistic	interpretation!

• The	polytope	view	is	agnostic	about	how	you	
interpret	the	weights.
– It	only	says	that	the	decoding	problem	is	an	ILP.

3.		Weighted	Parsing

Grammars

• Grammars	are	often	associated	with	natural	
language	parsing,	but	they	are	extremely	
powerful	for	imposing	constraints.

• We	can	add	weights	to	them.
– HMMs	are	a	kind	of	weighted	regular	grammar	
(closely	connected	to	WFSAs)

– PCFGs	are	a	kind	of	weighted	CFG
– Many,	many	more.

• Weighted	parsing:		find	the	maximum-weighted	
derivation for	a	string	x.	

Decoding	as	Weighted	Parsing

• Every	valid	y is	a	grammatical	derivation	
(parse)	for	x.
– HMM:		sequence	of	“grammatical” states	is	one	
allowed	by	the	transition	table.

• Augment	parsing	algorithms	with	weights	and	
find	the	best	parse.	

The	Viterbi	algorithm	is	an	instance	of	
recognition	by	a	weighted	grammar!

BIO	Tagging	as	a	CFG

• Weighted	(or	probabilistic)	CKY	is	a	dynamic	
programming	algorithm	very	similar	in	
structure	to	classical	CKY.

4.		Paths	and	Hyperpaths

Best	Path

• General	idea:		take	x and	build	a	graph.
• Score	of	a	path	factors	into	the	edges.

• Decoding	is	finding	the	best	path.

arg max
y

w⇥g(x,y) = arg max
y

w⇥
�

e�Edges

f(e)1{e is crossed by y’s path}

The	Viterbi	algorithm	is	an	instance	of	
finding	a	best	path!

“Lattice” View	of	Viterbi

A	Generic	Best	Path	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	

b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
while	d	has	not	converged:

pick	an	arbitrary	edge	(u,	v)
if	d(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

Ordering	Updates

• Naïve	ways	of	choosing	edges	will	lead	to	
cyclic	updating	and	gross	inefficiency!

• Before	considering	various	ways	of	doing	it,	
let's	consider	how	the	Viterbi	algorithm	is	
essentially	solving	the	same	problem.

Viterbi	Algorithm	
(In	the	Style	of	A	Best	Path	Algorithm)

• Input:		
– directed	graph	G	=	(V,	E)	where	

each	vertex	v	=	(q,	t),	q	∈ Q	∪ {∅},	t	∈ {-1,	0,	1,	…,	n}	
and	each	edge	(u,	v)	=	((q,	t),	(q',	t	+	1))

– cost	:	E	→	ℝ,	defined	by	
cost((q,	t),	(q',	t	+	1))	=	– log	γ(q' |	q)	– log	η(st+1 |	q)	– log	(1	- ξ(q))
cost((q,	n	- 1),	(q',	n))	=	– log	γ(q' |	q)	– log	η(st+1 |	q)	– log	ξ(q')
cost((∅,	-1),	(q,	0))	=	– log π(q)

– fixed	start	vertex	v0 =	(∅,	-1)
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
perform	a	topological	sort	on	V
while	d	has	not	converged: for	each	v	in	top-sort	order:

pick	an	arbitrary	edge	(u,	v)
for	each	(u,	v)	∈ E:		
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

//	d(v)	and	b(v)	are	now	known

The	Viterbi	Trick

• From	a	“best	path”	perspective,	Viterbi	is:
– defining	the	vertices	and	edges	to	have	special	
structure	(state/time	step)

– assigning	costs	based	on	HMM	weights	and	the	
specific	input	string	s1 …	sn

– ordering	the	edges	cleverly	to	make	things	
efficient

• Note	also:		Viterbi's	graph	has	no	cycles.

Another	Variant:
“Forward” Updating

• After	topological	sort,	can	also	choose	all	edges	going	out	
of current	node.

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
perform	a	topological	sort	on	V
for	each	u	in	top-sort	order:

for	each	(u,	v)	∈ E:		
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

Memoized	Recursion
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0,	target	vertex	vt
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∅ and	b(v)	:=	∅
set	d(v0)	=	0
memoize(vt)

memoize(v):
//	guaranteed	to	return	best-cost	path	score	for	v
if	d(v)	=	∅:
d(v)	:=	∞
for	each	(u,	v)	∈ E:		

if	memoize(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

return	d(v)

A	Generic	Best	Path	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	

b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
while	d	has	not	converged:

pick	an	arbitrary	edge	(u,	v)
if	d(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

Dijkstra's	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ≥0	(important!),	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
Q	:=	priority	queue	on	V	ordered	by	d	(lower	cost	=	higher	priority)
while	d	has	not	converged: while	Q	is	not	empty:

pick	an	arbitrary	edge	(u,	v)
u	:=	extract-min(Q)
for	each	(u,	v)	∈ E:
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u
update	v's	priority	in	Q	

A*	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ≥0,	start	vertex	v0,	target	

vertex	vt,	heuristic	h	:	V →	ℝ≥0 such	that	h(v)	≤	best-cost(v,	vt)
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
Q	:=	priority	queue	on	V	ordered	by	d	+	h	(lower	cost	=	higher	priority)
while	Q	is	not	empty:

u	:=	extract-min(Q)
for	each	(u,	v)	∈ E:
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u
update	v's	priority	in	Q	

Minimum	Cost	Hyperpath

• General	idea:		take	x and	build	a	hypergraph.
• Score	of	a	hyperpath	factors	into	the	
hyperedges.

• Decoding	is	finding	the	best	hyperpath.

• This	connection	was	elucidated	by	Klein	and	
Manning	(2002).

Parsing	as	a	Hypergraph

Parsing	as	a	Hypergraph

cf.	“Dean	for	democracy”

Parsing	as	a	Hypergraph

Forced	to	work	on	his	thesis,	sunshine	streaming	in	the	window,	
Mike	experienced	a	…

Parsing	as	a	Hypergraph

Forced	to	work	on	his	thesis,	sunshine	streaming	in	the	window,	
Mike	began	to	…

Why	Hypergraphs?

• Useful,	compact	encoding	of	the	hypothesis	
space.
– Build	hypothesis	space	using	local	features,	maybe	
do	some	filtering.

– Pass	it	off	to	another	module	for	more	fine-
grained	scoring	with	richer	or	more	expensive	
features.

5.		Weighted	Logic	Programming

Logic	Programming

• Start	with	a	set	of	axioms	and	a	set	of	inference	
rules.

• The	goal	is	to	prove	a	specific	theorem,	goal.
• Many	approaches,	but	we	assume	a	deductive
approach.
– Start	with	axioms,	iteratively	produce	more	theorems.

Weighted	Logic	Programming

• Twist:		axioms	have	weights.
• Want	the	proof	of	goal with	the	best	score:

• Note	that	axioms	can	be	used	more	than	once	
in	a	proof	(y).

arg max
y

w⇥g(x,y) = arg max
y

w⇥
�

a�Axioms

f(a)freq(a;y)

Whence	WLP?

• Shieber,	Schabes,	and	Pereira	(1995):		many	
parsing	algorithms	can	be	understood	in	the	
same	deductive	logic	framework.

• Goodman	(1999):		add	weights	in	a	semiring,	
get	many	useful	NLP	algorithms.

• Eisner,	Goldlust,	and	Smith	(2004,	2005):		
semiring-generic	algorithms,	Dyna.

Dynamic	Programming

• Most	views	(exception	is	polytopes)	can	be	
understood	as	DP	algorithms.
– The	low-level	procedures	we	use	are	often	DP.
– Even	DP	is	too	high-level	to	know	the	best	way	to	
implement.	

• Break	a	problem	into	slightly	smaller	problems	with	
optimal	substructure.
– Best	path	to	v	depends	on	best	paths	to	all	u	such	
that	(u,v)	∈ E.

• Overlapping	subproblems:		each	subproblem gets	
used	repeatedly,	and	there	aren’t	too	many	of	them.

Dynamic	Programming
• Three	main	strategies	for	DP:

– Viterbi,	Levenshtein edit	distance,	CKY:		predefined,	
“clever” ordering.

– Memoization
– Agenda	(Dijkstra’s	algorithm,	A*)

• Things	to	remember	in	general:
– The	hypergraph may	too	big	to	represent	explicitly;	
exhaustive	calculation	may	be	too	expensive.

– The	hypergraph may	or	may	not	have	properties	that	make	
“clever” orderings	possible.

– DP	does	not	imply	polynomial	time	and	space!		Most	
common	approximations	when	the	desired	state	space	is	
too	big:		beam	search,	cube	pruning,	agendas	with	early	
stopping,	...

Summary

• Decoding	is	the	general	problem	of	choosing	a	
complex	structure.
– Linguistic	analysis,	machine	translation,	speech	
recognition,	…

– Statistical	models	are	usually	involved	(not	
necessarily	probabilistic).

• No	perfect	general	view,	but	much	can	be	
gained	through	a	combination	of	views.

• First	question:		can	I	solve	it	exactly	with	DP?

