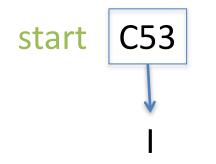
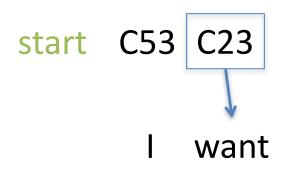
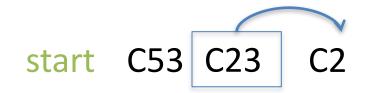
HMM Review

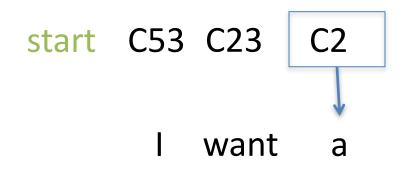
start



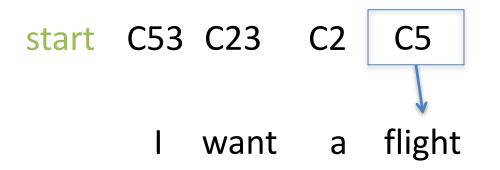




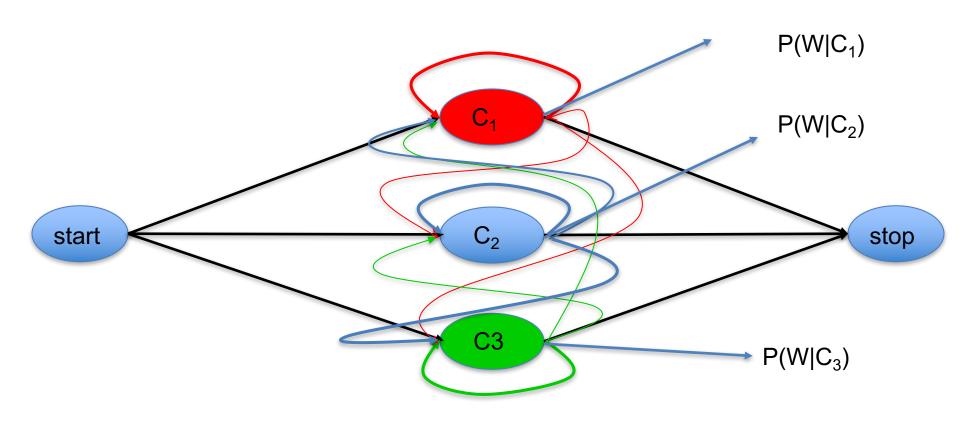
I want



l want a

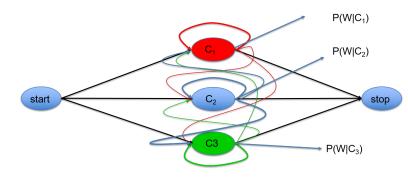


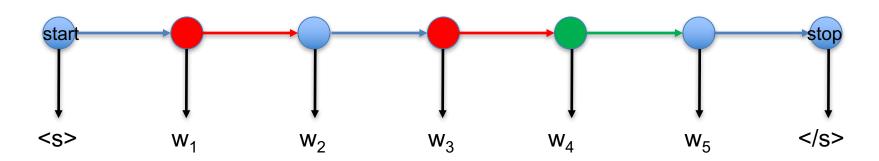
HMM as FSA



 Each time a class is visited, draw a word from the class

HMM

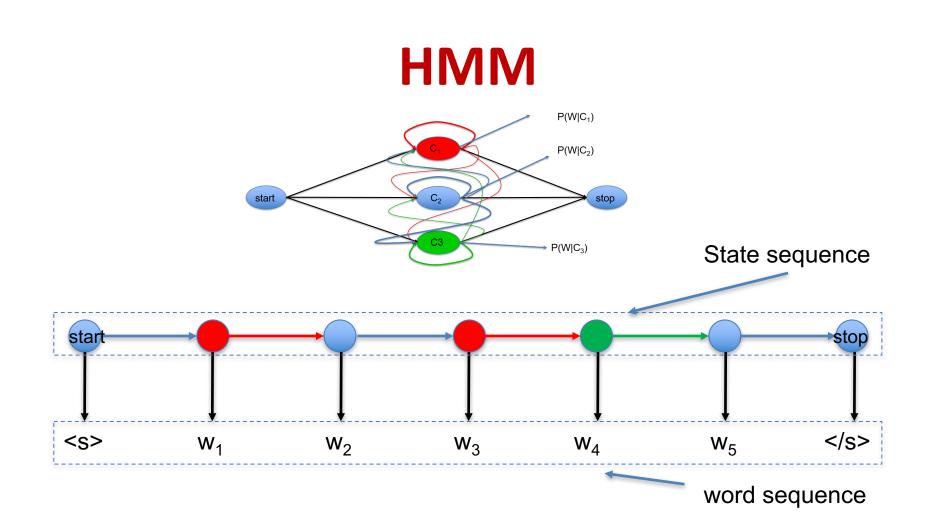




Parameters of the HMM

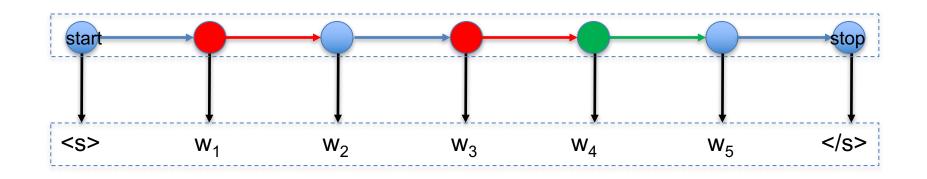
- The state transition probabilities of the underlying Markov chain on latent states $-P(S_i|S_j)$
- Initial state probabilities
 - What is the probability that at the very first instant, the process will be in state S_j
 - Often denoted by $\pi(S_j)$
- Emission probabilities

 $-P(w_i|s_j)$



• We only observe the word sequence -- the state sequence is a latent variable

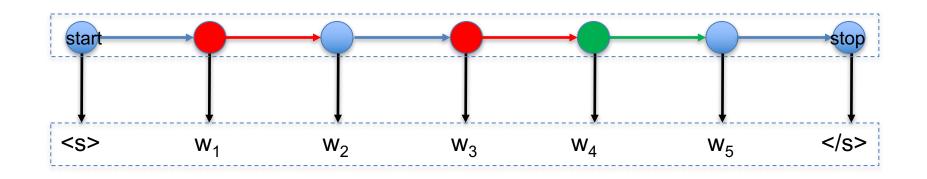
Decoding the state sequence



- Preliminary: Given all parameters of the HMM

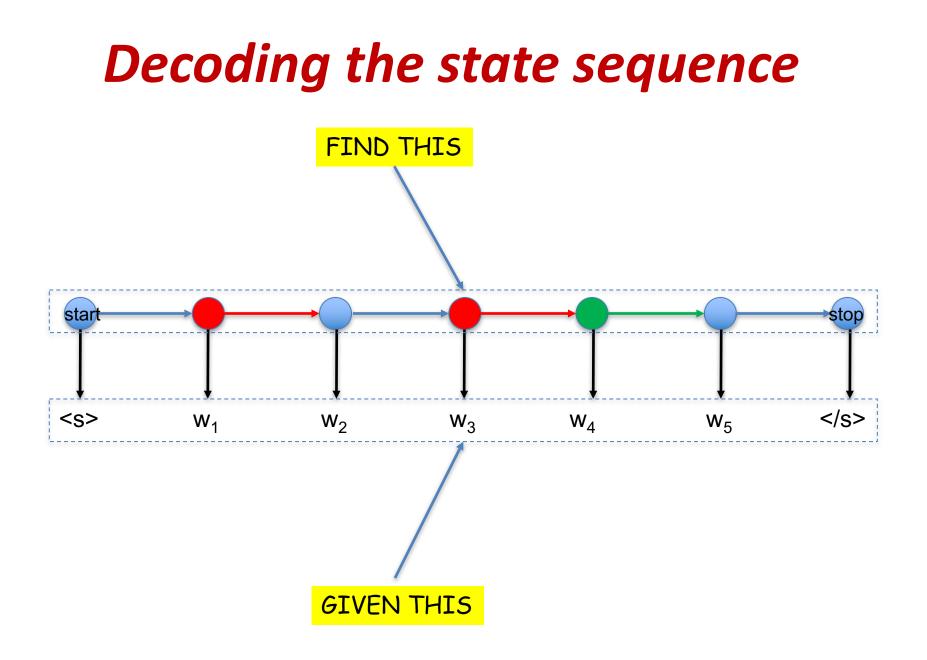
 Transition probabilities, initial state probabilities, emission probabilities
- Problem: Given a word sequence <s> w₁ w₂...
 </s>, find the underlying state sequence

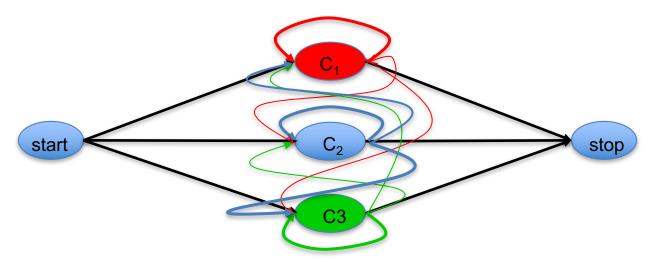
Decoding the state sequence



- Preliminary: Given all parameters of the HMM

 Transition probabilities, initial state probabilities, emission probabilities
- Problem: Given a word sequence <s> w₁ w₂...
 </s>, find the state sequence with highest probability

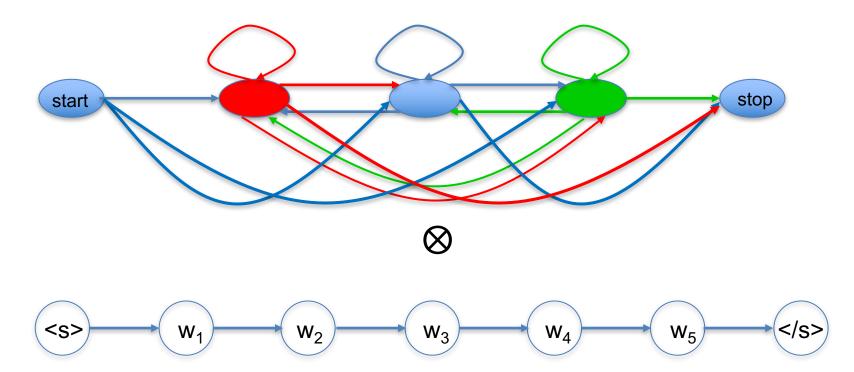




- Any valid state sequence *must* conform to the transition structure imposed by the Markov model
 - It *must* be a valid path through the Markov graph (i.e. no zero prob transitions) and it will be scored by the Markov model's probs
- At the same time, the *productions* from the state sequence must conform to the structure of the observation
 - i.e. w_i must be followed by w_{i+1} with probability 1 and each emission will be scored with the corresponding emission prob

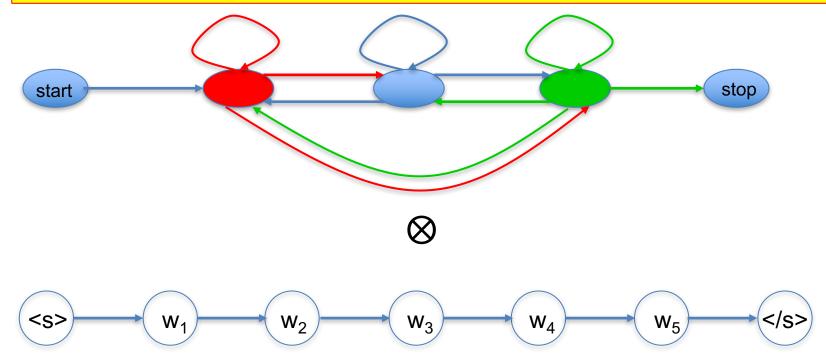
The graph view of the problem star C_2 stop C3</s> <s> W₁ W_2 W_3 W₄ W_5

- The set of all combination of states and words can be represented as a combined graph that conforms to the restrictions of *both* graphs
 - i.e. the composition of both graphs, which is a trellis..

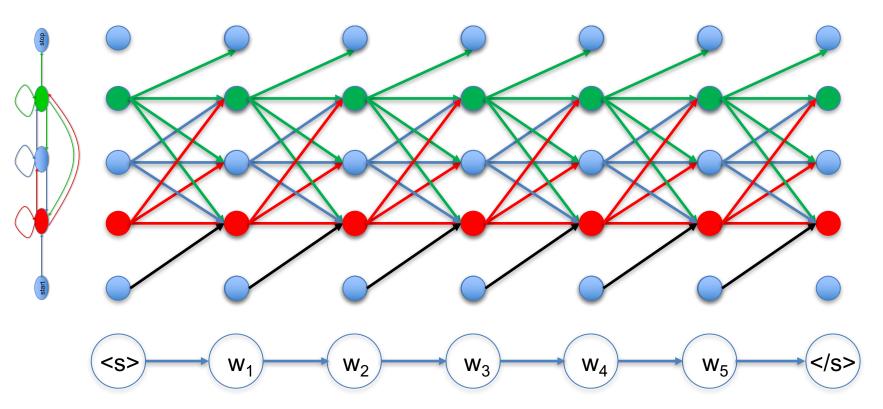


- The set of all combination of states and words can be represented as a combined graph that conforms to the restrictions of *both* graphs
 - I.e. the composition of both graphs, which is a trellis..

Assuming a simpler model for clarity of illustration (first word *must* be from red state, last word *must* be from green state)



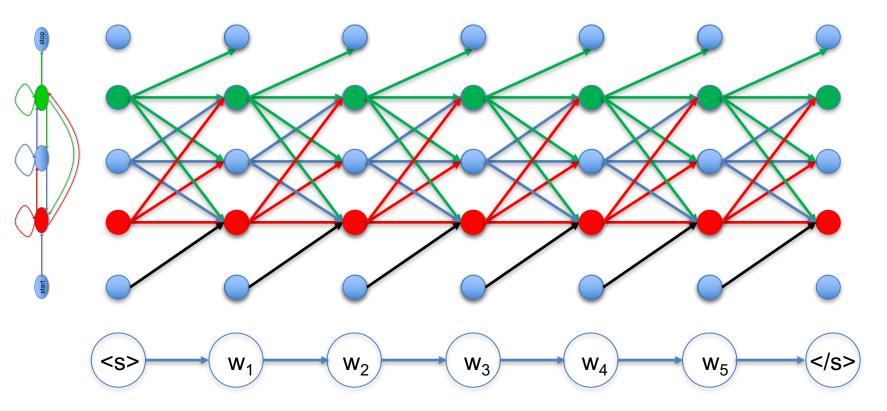
- The set of all combination of states and words can be represented as a combined graph that conforms to the restrictions of *both* graphs
 - I.e. the composition of both graphs, which is a trellis..



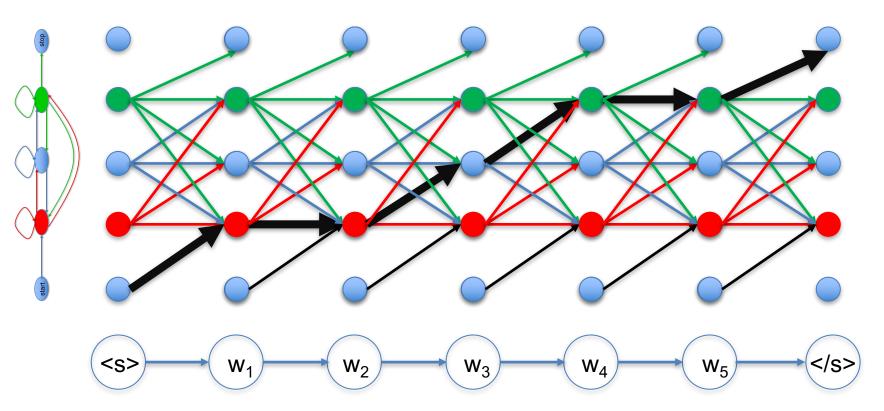
- The Trellis that composes the state graph and the observation graph
- Every state sequence through this trellis conforms to both, the Markov graph over states and the linear ordering of words

Probabilities on the Trellis

- The "score" for combining a state and a word is the probability of emitting that word from the state
- The "score" for an edge is the product of the probabilities associated with edges in both graphs
- The "score" for a path through the trellis is now obtained by *multiplying* component node and edge probabilities



- Trellis: NodeScore(s, w) = P(w|s)
- Trellis $Edgescore(s_i, s_j) = P(s_j | s_i)$

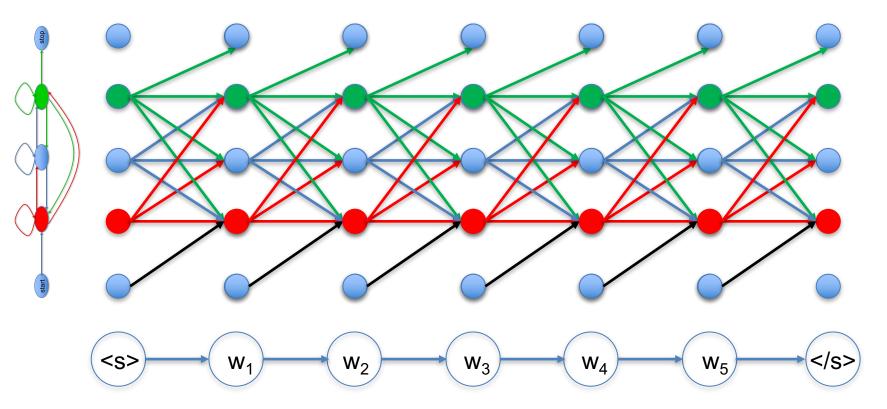


As defined, the score associated with a path in the trellis is its joint prob under the generative model:
 P(start, < s >, s₁, w₁, s₂, w₂, ..., stop, </s >)

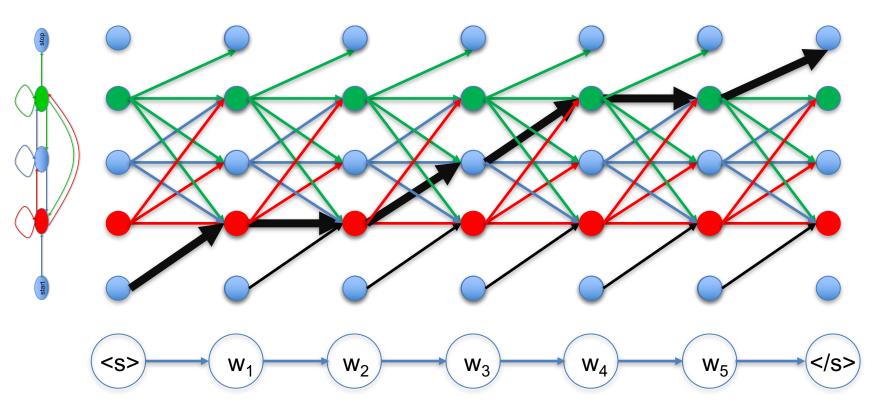
Probabilities on the Trellis

 Instead of probabilities, we will often work with *log* probabilities (this is one way of dealing with underflow)

• So.... instead of multiplying components along the paths, we add them

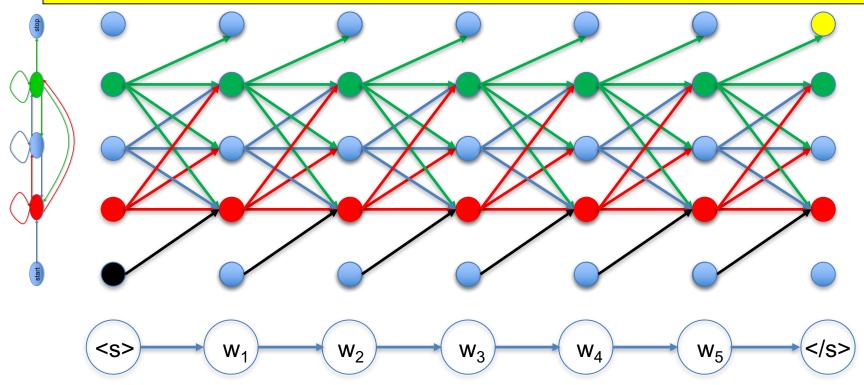


- Trellis: $NodeScore(s, w) = \log P(w|s)$
- Trellis $Edgescore(s_i, s_j) = \log P(s_j | s_i)$



• Path score = log $P(start, < s >, s_1, w_1, s_2, w_2, ..., stop, </s >)$

Finding the state sequence



- Problem: Find the most probable state sequence given the word sequence
- Equivalent problem: Find the highest scoring path from the start (black) node to the final (yellow) node
- For this we can now use the Viterbi algorithm

Viterbi algorithm

```
Initialize:
    Score[1:M, 1:N] = -infty
    Bestpredecessor[1:M, 1:N] = null
  Algorithm:
•
Score[1,1] = nodescore(node(1,1))
for i = 2:M
    for j = 1:N
        BP = argmax_k(Score[i-1,k] + edgescore((i-1,k),(i,j)))
        Score[i,j] = Score[i-1,BP] + edgescore((i-1,BP),(i,j))
                                   + nodescore(i,j)
        Bestpredecessor[i,j] = BP

    Final overall cost:

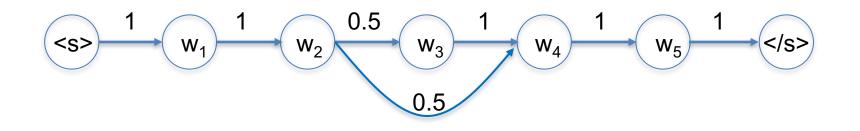
BestScore = Score[M,N]
  Actual sequence of states (from parent 1):
•
State[M] = N
for i = M downto 2
    State[i-1] = Bestpredecessor(i, State[i])
```

Generalizing the approach

 $<s>w_1 w_2 [w_3] w_4 w_5 </s>$

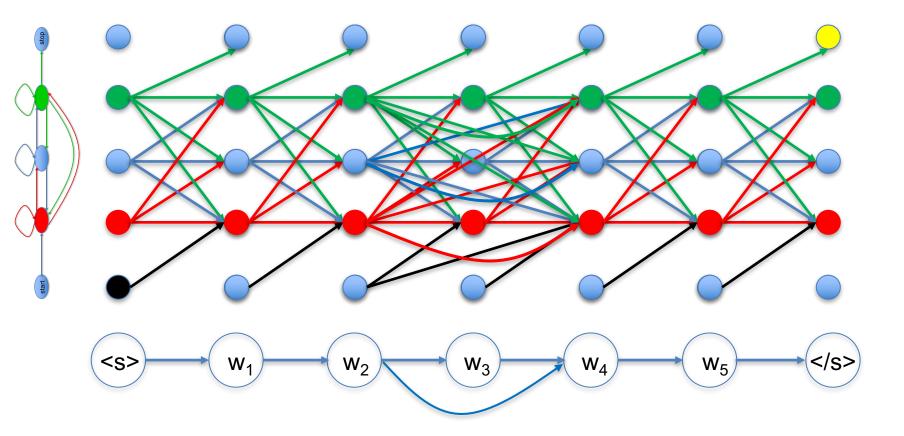
- Consider the case where the observed word sequence is uncertain
 - Uncertain whether w_3 was said or not
 - But the presence or absence of w_3 changes the interpretation of the sentence
 - How to find the most likely state sequence

The uncertain observation graph



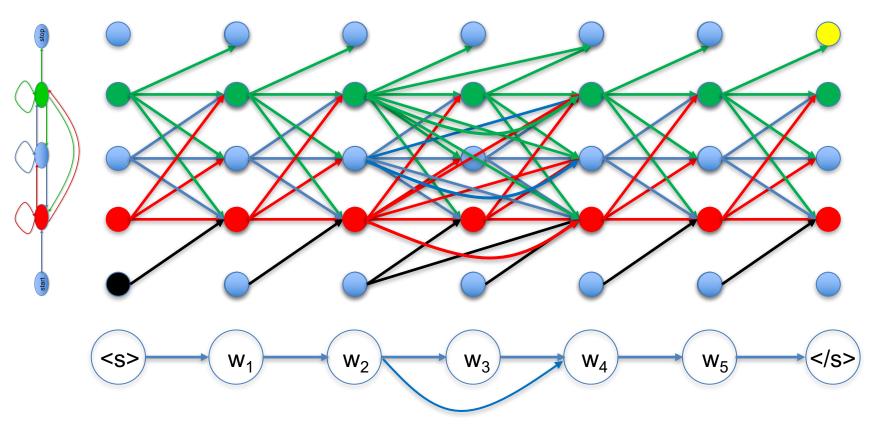
- The observation sequence can now be modeled by this modified graph
 - Note the probabilities
 - The 0.5 may be replaced by any other value indicative of our certainty in the occurrence of the word

The modified trellis



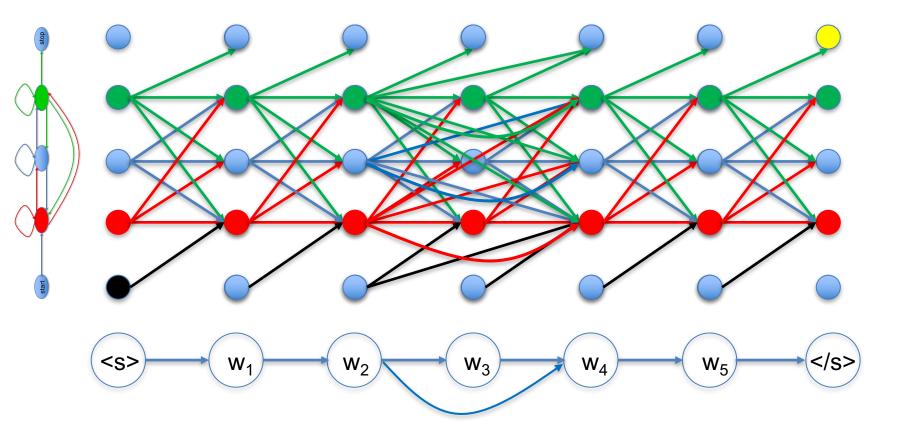
- Trellis obtained by composing Markov graph and observation graph
- Permits state sequences that skip the uncertain word

The modified trellis



- $NodeScore(s, w) = \log P(w|s)$
- Edgescore $((s_i, s_j), (w_k, w_l)) = \log P(s_j | s_i) + \log P(w_k | w_l)$
 - Note: $\log P(w_k|w_l) = -\infty$ for words that are not connected

The modified trellis



• The Viterbi algorithm can be modified to solve this problem

Generalizing the approach

Spare him not , kill him OR Spare him , not kill him

• What is the word graph for this problem?

Uses of HMMs in NLP

- Part-of-speech tagging (Church, 1988; Brants, 2000)
- Named entity recognition (Bikel et al., 1999) and other information extraction tasks
- Text chunking and shallow parsing (Ramshaw and Marcus, 1995)
- Word alignment in parallel text (Vogel et al., 1996)
- Also popular in computational biology and central to speech recognition.

Part of Speech Tagging

After paying the medical bills , Frances was nearly broke .

RB VBG DT JJ NNS, NNP VBZ RB JJ.

- Adverb (RB)
- Verb (VBG, VBZ, and others)
- Determiner (DT)
- Adjective (JJ)
- Noun (NN, NNS, NNP, and others)
- Punctuation (., ,, and others)

Named Entity Recognition

With Commander Chris Ferguson at the helm,

Atlantis touched down at Kennedy Space Center.

Named Entity Recognition

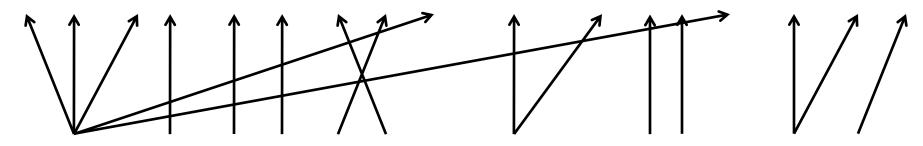
OB-personI-personI-personOOOOWith Commander Chris Ferguson at the helm ,B-space-shuttleOOB-placeI-placeI-placeOAt least is the value of a curve of the provided of the value of the provided of the value of the provided of the pr

Atlantis touched down at Kennedy Space Center.

• What makes this hard?

Word Alignment

Mr. President , Noah's ark was filled not with production factors , but with living creatures.



NULL Noahs Arche war nicht voller Productionsfactoren, sondern Geschöpfe.

Decoding / Inference

 A model over sequences of symbols, but there is missing information associated with each symbol: its "state."

- Assume a finite set of possible states, Λ .

$$p(\text{start}, s_1, w_1, s_2, w_2, \dots, s_n, w_n \text{stop}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$

• A *joint* model over the observable symbols and their hidden/latent/unknown classes.

Key Algorithms for HMMs

Given the HMM and a sequence:

- 1. The most probable state sequence?
- 2. The probability of the word sequence?
- 3. The probability distribution over states, for each word?
- 4. Minimum risk sequence

Given states and sequences, or just states:

5. The parameters of the HMM (γ and η)?

Problem 1: Most Likely State Sequence

- Input: HMM (γ and η) and symbol sequence
 w.
- Output: $\arg \max_{s} p(s \mid w, \gamma, \eta)$
- Statistics view: maximum a posteriori inference
- Computational view: discrete, combinatorial optimization

Example

Ι	suspect	the	present	forecast	is	pessimistic	•
CD	JJ	DT	II	NN	NNS	IJ	
NN	NN	11	NN	VB	VBZ	11	•
NNP	VB	NN	RB	VBD			
PRP	VBP	NNP	VB	VBN			
		VBP	VBP	VBP			
4	4	5	5	5	2	1	1

4,000 possible state sequences!

Naïve Solutions

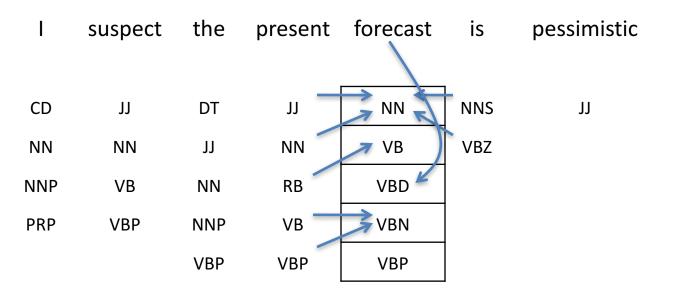
- List all the possibilities in Λ^n .
 - Correct.

– Inefficient.

- Work left to right and greedily pick the best s_i at each point, based on s_{i-1} and w_i.
 - Not correct; solution may not be equal to: $\arg\max_{\boldsymbol{s}} p(\boldsymbol{s} \mid \boldsymbol{w}, \boldsymbol{\gamma}, \boldsymbol{\eta})$
 - But fast!

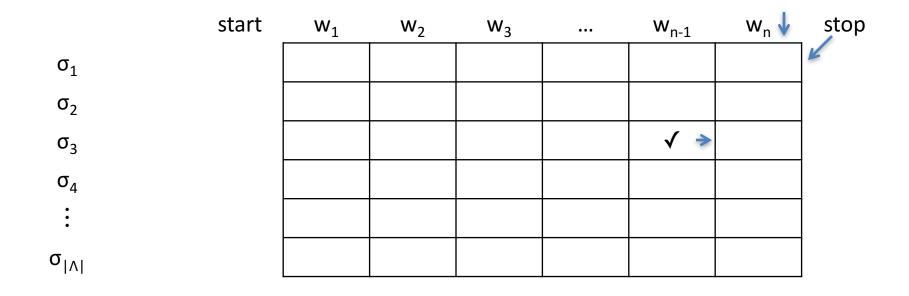
Interactions

- Each word's label depends on the word, and nearby labels.
- But given *adjacent* labels, others do not matter.



(arrows show most preferred label by each neighbor)

Base Case: Last Label



 $\operatorname{score}_{n}(\sigma) = \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_{n} \mid \sigma) \times \gamma(\sigma \mid s_{n-1})$ \uparrow Of course, we do not actually know s_{n-1}!

Recurrence

- If I knew the score of every sequence s₁ ... s_{n-1},
 I could reason easily about s_n.
 - But my decision about s_n would only depend on s_{n-1}
- So I really only need to know the score of the best sequence ending in each s_{n-1}.
- Think of that as some "precalculation" that happens before I think about s_n.

Recurrence

 Assume we have the scores for all prefixes of the current state sequence.

- One score for each possible last-state of the prefix.

$$\operatorname{score}_{n}(\sigma) = \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_{n} \mid \sigma) \times \max_{\sigma'} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{n-1}(\sigma')$$

Recurrence

- The recurrence "bottoms out" at start.
- This leads to a simple algorithm for calculating all the scores.

$$\operatorname{score}_{n}(\sigma) = \gamma(\operatorname{stop} | \sigma) \times \eta(w_{n} | \sigma) \times \max_{\sigma'} \gamma(\sigma | \sigma') \times \operatorname{score}_{n-1}(\sigma')$$

$$\operatorname{score}_{n-1}(\sigma) = \eta(w_{n-1} | \sigma) \times \max_{\sigma'} \gamma(\sigma | \sigma') \times \operatorname{score}_{n-2}(\sigma')$$

$$\operatorname{score}_{n-2}(\sigma) = \eta(w_{n-2} | \sigma) \times \max_{\sigma'} \gamma(\sigma | \sigma') \times \operatorname{score}_{n-3}(\sigma')$$

$$\vdots \qquad \vdots$$

$$\operatorname{score}_{1}(\sigma) = \eta(w_{1} | \sigma) \times \gamma(\sigma | \operatorname{start})$$

Viterbi Algorithm (Scores Only)

• For every σ in Λ , let:

score₁(σ) = $\eta(w_1 \mid \sigma) \times \gamma(\sigma \mid \text{start})$ • For i = 2 to n - 1, for every σ in Λ :

• For every $\sigma \inf \Lambda$: $\eta(w_i \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{i-1}(\sigma')$

 $\operatorname{score}_{n}(\sigma) = \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_{n} \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{n-1}(\sigma')$

• Claim:

$$\max_{\boldsymbol{s}} p(\boldsymbol{s}, \boldsymbol{w} \mid \boldsymbol{\gamma}, \boldsymbol{\eta}) = \max_{\sigma \in \Lambda} \operatorname{score}_n(\sigma)$$

Exploiting Distributivity

 $= \max_{\sigma \in \Lambda} \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_n \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{n-1}(\sigma')$ $\max_{\sigma \in \Lambda} \operatorname{score}_n(\sigma)$ $= \max_{\sigma \in \Lambda} \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_n \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma')$ $\times \eta(w_{n-1} \mid \sigma') \times \max_{\sigma'' \in \Lambda} \gamma(\sigma' \mid \sigma'') \times \operatorname{score}_{n-2}(\sigma'')$ $= \max_{\sigma \in \Lambda} \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_n \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma')$ $\times \eta(w_{n-1} \mid \sigma') \times \max_{\sigma'' \in \Lambda} \gamma(\sigma' \mid \sigma'')$ $\times \eta(w_{n-2} \mid \sigma'') \times \max_{\sigma''' \in \Lambda} \gamma(\sigma'' \mid \sigma''') \times \operatorname{score}_{n-3}(\sigma''')$ $= \max_{\sigma, \sigma', \sigma'', \sigma'''} \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_n \mid \sigma) \times \gamma(\sigma \mid \sigma')$ $\times \eta(w_{n-1} \mid \sigma') \times \gamma(\sigma' \mid \sigma'')$ $\times \eta(w_{n-2} \mid \sigma'') \times \gamma(\sigma'' \mid \sigma''') \times \operatorname{score}_{n-3}(\sigma''')$ n+1 $= \max_{\boldsymbol{s} \in \Lambda^n} \prod_{i \in \Lambda^n} \gamma(s_i \mid s_{i-1}) \times \eta(w_i \mid s_i)$

$$\max_{\boldsymbol{s}} p(\boldsymbol{s}, \boldsymbol{w} \mid \boldsymbol{\gamma}, \boldsymbol{\eta}) = \max_{\sigma \in \Lambda} \operatorname{score}_{n}(\sigma)$$

	I	suspect	the	present	forecast	is	pessimistic	•
CD	3e-7							
DT			3E-8					
11		1E-9	1E-12	3E-12			7E-23	
NN	4e-6	2E-10	1E-13	6E-13	4e-16			
NNP	1E-5		4E-13					
NNS						1E-21		
PRP	4E-3							
RB				2E-14				
VB		6E-9		3E-15	2E-19			
VBD					6E-18			
VBN					4E-18			
VBP		5e-7	4E-14	4e-15	9e-19			
VBZ						6E-18		
								2e-24
	1	2	3	4	5	6	7	8

Not Quite There

- As described, this algorithm only lets us calculate the *probability* of the best label sequence.
- It does not recover the best sequence!

Understanding the Scores

 score_i(σ) is the score of the best sequence labeling up through w_i, ignoring what comes later.

score_i(
$$\sigma$$
) = max $p(s_1, w_1, s_2, w_2, \dots, s_i = \sigma, w_i)$

- Similar trick as before: if I know what s_{i+1} is, then I can use the scores to choose s_i.
- Solution: keep backpointers.

	I	suspect	the	present	forecast	is	pessimistic	
CD	3E-7							
DT			3e-8					
11		1E-9	1E-12	3E-12			7E-23	
NN	4e-6	2E-10	1E-13	61-13	4E-16			
NNP	1E-5		4E-13					
NNS						1E-21		
PRP	4E-3							
RB				2E-14				
VB		6E-9		3E-15	2E-19			
VBD					6E-18			
VBN					4E-18			
VBP		5E-7	4E-14	4E-15	9E-19			
VBZ						6E-18		
								2E-24

	I	suspect	the	present	forecast	is	pessimistic	
CD	3e-7							
DT			3E-8					
11		1E-9	1E-12	3E-14 K			7E-23	
NN	4e-6	2E-10	1E-13	61-13	4E-16			
NNP	1E-5		4E-13					
NNS						1E-21		
PRP	4E-3							
RB				2E-14				
VB		6E-9		3E-15	2E-19			
VBD					6E-18			
VBN					4E-18			
VBP		5E-7	4E-14	4E-15	9E-19			
VBZ						6E-18		
•								2E-24

Viterbi Algorithm

• For every σ in Λ , let:

score₁(σ) = $\eta(w_1 \mid \sigma) \times \gamma(\sigma \mid \text{start})$

- For i = 2 to n 1, for every σ in Λ : $\operatorname{score}_{i}(\sigma) = \eta(w_{i} \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{i-1}(\sigma')$ $\operatorname{bp}_{i}(\sigma) = \operatorname{arg} \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{i-1}(\sigma')$
- For every σ in Λ :

 $\operatorname{score}_{n}(\sigma) = \gamma(\operatorname{stop} \mid \sigma) \times \eta(w_{n} \mid \sigma) \times \max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{n-1}(\sigma')$ $\operatorname{bp}_{n}(\sigma) = \arg\max_{\sigma' \in \Lambda} \gamma(\sigma \mid \sigma') \times \operatorname{score}_{n-1}(\sigma')$

Viterbi Algorithm: Backtrace

- After calculating all score and bp values, start by choosing s_n to maximize score_n.
- Then let $s_{n-1} = bp_n(s_n)$.
- In general, $s_{i-1} = bp_i(s_i)$.

Another Example

	time	flies	like	an	arrow	
DT				10e-15	6e-21	
IN			8e-13		1e-19	
]]			6e-14		2e-16	
NN	2e-4				3e-16	
NNP					1e-16	
VB	2e-7		1e-14		1e-19	
VBP			8e-16		4e-19	
VBZ		2e-9			3e-18	
•					1e-21	3e-17
,				4e-20	5e-22	

Another Example

	time	flies	like	an	arrow	
DT				/ 10e-15 🔨	6e-21	
IN			8e-13		1e-19	
11			6e-14		2e-16	
NN	2e-4 🔥				🔪 3e-16 🔥	
NNP					1e-16	
VB	2e-7		1e-14		1e-19	
VBP			8e-16		4e-19	
VBZ		` 2e-9 *			3e-18	
•					1e-21	3 e-17
,				4e-20	5e-22	

Lecture Outline

- ✓ Viterbi algorithm
- 2. Decoding more generally
- 3. Five views

Inference

- Eventually, you need to run your structured predictor on test data!
- For sequence labeling and segmentation models with very local interactions, decoding is usually accomplished by something "like" Viterbi algorithm.

Random Variables

- A variable whose value depends on chance
- Denoted by capital letters: X, Y, Z
- Associated with sets of possible values: Val(X)
- A single possible value: $x \in Val(X)$
- Probabilistic modeling: defining distributions over r.v.s
- There's more than one way to map your structured prediction problem to random variables!

Probabilistic Inference Problems

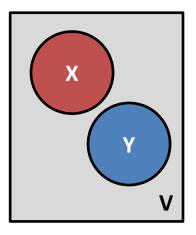
Given values for some random variables ($X \subseteq V$) ...

*Most Probable Explanation: what are the most probable values of the rest of the r.v.s V \ X?

(More generally ...)

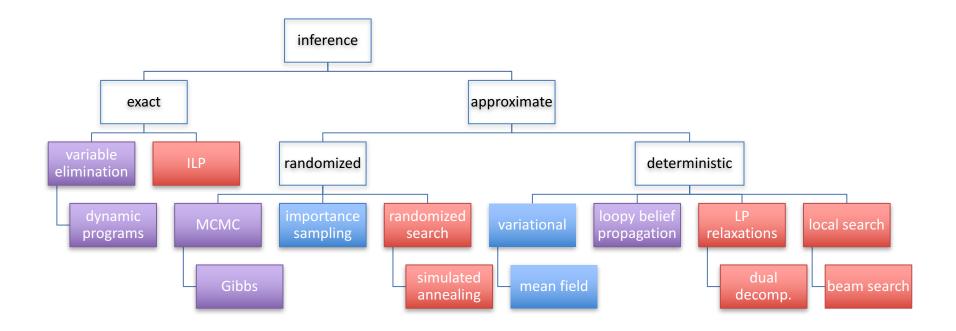
- *Maximum A Posteriori (MAP): what are the most probable values of some other r.v.s, Y ⊂ (V \ X)?
- Random sampling from the posterior over values of **Y**
- Full posterior over values of **Y**
- Marginal probabilities from the posterior over Y
- *Minimum Bayes risk: What is the Y with the lowest expected cost?
- *Cost-augmented decoding: What is the most dangerous value of Y, compared to true y*?

These do not need to be probabilistic! Change "most probable" to "maximum scoring."



*Different kinds of **decoding**.

Approaches to Inference



red = hard inference blue = soft inference purple = both

- X and Y are both sequences of symbols
 - \boldsymbol{X} is a sequence from the vocabulary $\boldsymbol{\Sigma}$
 - \boldsymbol{Y} is a sequence from the state space Λ

$$p(\mathbf{Y} = \mathbf{s}, \mathbf{X} = \mathbf{w}) =$$

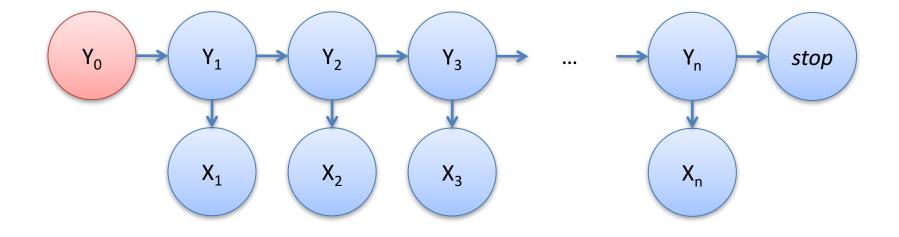
$$p(\text{start}, s_1, w_1, s_2, w_2, \dots, s_n, w_n \text{stop}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$

- Parameters:
 - Transitions γ including $\gamma(stop | s)$, $\gamma(s | start)$
 - Emissions **ŋ**

• The joint model's independence assumptions are easy to capture with a Bayesian network.

$$p(\mathbf{Y} = \mathbf{s}, \mathbf{X} = \mathbf{w}) =$$

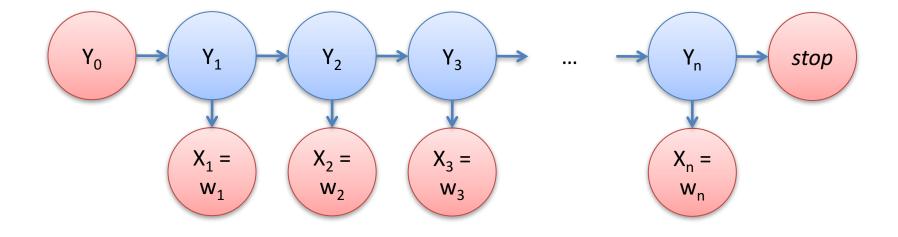
$$p(\text{start}, s_1, w_1, s_2, w_2, \dots, s_n, w_n \text{stop}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$



 The MPE/MAP inference problem is to find the most probable value of Y given X = x.

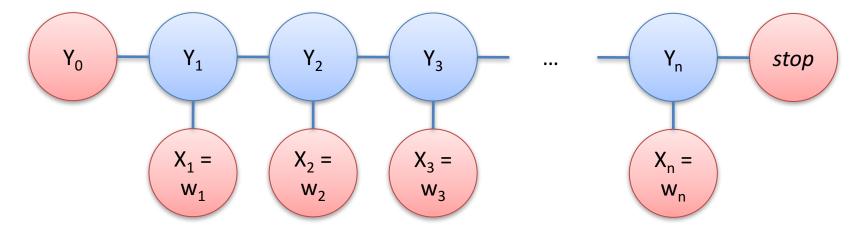
$$p(\mathbf{Y} = \mathbf{s}, \mathbf{X} = \mathbf{w}) =$$

$$p(\text{start}, s_1, w_1, s_2, w_2, \dots, s_n, w_n \text{stop}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$



 The MPE/MAP inference problem is to find the most probable value of Y given X = x.

• Markov network:



Markov Network

- A different graphical model representation; undirected. Vertices are still r.v.s.
- Every clique C in the graph gets a *local* scoring function ϕ_c that maps assignments to values.

$$mulscore(\boldsymbol{x}, \boldsymbol{y}) = \prod_{C \in \mathcal{C}} \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$
$$addscore(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \log \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

• This score can be *globally* renormalized to obtain a probabilistic interpretation. (Not today.)

Restriction #1

1. The score function needs to *factor locally*.

- The more locally, the better!

$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \log \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

Linear Models

- Define a feature vector function **g** that maps (**x**, **y**) pairs into d-dimensional real space.
- Score is linear in g(x, y).

$$score(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

 $\boldsymbol{y}^{*} = \arg \max_{\boldsymbol{y} \in \mathcal{Y}_{\boldsymbol{x}}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$

- Results:
 - decoding seeks **y** to maximize the score.
 - learning seeks w to ... do something we'll talk about later.
- Extremely general!

Generic Noisy Channel as Linear Model

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log \left(p(\boldsymbol{y}) \cdot p(\boldsymbol{x} \mid \boldsymbol{y}) \right)$$

$$= \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{y}) + \log p(\boldsymbol{x} \mid \boldsymbol{y})$$

$$= \arg \max_{\boldsymbol{y}} w_{\boldsymbol{y}} + w_{\boldsymbol{x} \mid \boldsymbol{y}}$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

 Of course, the two probability terms are typically composed of "smaller" factors; each can be understood as an exponentiated weight.

Max Ent Models as Linear Models

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{y} \mid \boldsymbol{x})$$

$$= \arg \max_{\boldsymbol{y}} \log \frac{\exp \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})}{z(\boldsymbol{x})}$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) - \log z(\boldsymbol{x})$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

HMMs as Linear Models

$$\begin{aligned} \hat{\boldsymbol{y}} &= \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{x}, \boldsymbol{y}) \\ &= \arg \max_{\boldsymbol{y}} \left(\sum_{i=1}^{n} \log p(x_i \mid y_i) + \log p(y_i \mid y_{i-1}) \right) + \log p(stop \mid y_n) \\ &= \arg \max_{\boldsymbol{y}} \left(\sum_{i=1}^{n} w_{y_i \downarrow x_i} + w_{y_{i-1} \to y_i} \right) + w_{y_n \to stop} \\ &= \arg \max_{\boldsymbol{y}} \sum_{y, x} w_{y \downarrow x} freq(y \downarrow x; \boldsymbol{y}, \boldsymbol{x}) + \sum_{y, y'} w_{y \to y'} freq(y \to y'; \boldsymbol{y}) \\ &= \arg \max_{\boldsymbol{y}} \sum_{y, x} w^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) \end{aligned}$$

Restrictions #1, #2

1. The score function needs to *factor locally*.

- The more locally, the better!

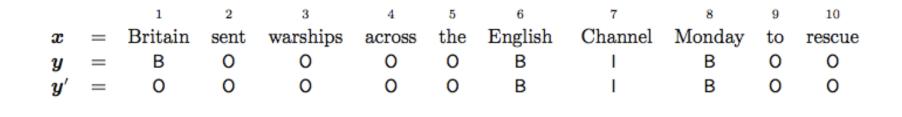
$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \log \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

2. The local scoring functions need to be linear in features.

$$score(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \mathbf{w}^{\top} \mathbf{f}(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

Running Example



11	12	13	14	15	16	17	18	19	20
Britons	stranded	by	Eyjafjallajökull	\mathbf{s}	volcanic	ash	cloud		
В	0	0	В	0	0	0	0	0	0
В	0	0	В	0	0	0	0	0	0

- IOB sequence labeling, here applied to NER
- Often solved with HMMs, CRFs, M³Ns ...

feature fun	$g(oldsymbol{x},oldsymbol{y})$	$g({m x},{m y}')$	
bias:	count of i s.t. $y_i = B$	5	4
	count of i s.t. $y_i = 1$	1	1
	count of i s.t. $y_i = 0$	14	15
lexical:	count of <i>i</i> s.t. $x_i = Britain$ and $y_i = B$	1	0
	count of <i>i</i> s.t. $x_i = Britain$ and $y_i = I$	0	0
	count of <i>i</i> s.t. $x_i = Britain$ and $y_i = 0$	0	1
downcased:	count of i s.t. $lc(x_i) = britain$ and $y_i = B$	1	0
	count of i s.t. $lc(x_i) = britain$ and $y_i = 1$	0	0
	count of i s.t. $lc(x_i) = britain$ and $y_i = 0$	0	1
	count of i s.t. $lc(x_i) = sent$ and $y_i = 0$	1	1
	count of i s.t. $lc(x_i) = warships$ and $y_i = 0$	1	1
shape:	count of <i>i</i> s.t. $shape(x_i) = Aaaaaaa$ and $y_i = B$	3	2
	count of <i>i</i> s.t. $shape(x_i) = Aaaaaaa$ and $y_i = I$	1	1
	count of <i>i</i> s.t. $shape(x_i) = Aaaaaaa$ and $y_i = 0$	0	1
prefix:	count of i s.t. $pre_1(x_i) = B$ and $y_i = B$	2	1
	count of i s.t. $pre_1(x_i) = B$ and $y_i = I$	0	0
	count of i s.t. $pre_1(x_i) = B$ and $y_i = O$	0	1
	count of i s.t. $pre_1(x_i) = s$ and $y_i = 0$	2	2
	count of i s.t. $shape(pre_1(x_i)) = A$ and $y_i = B$	5	4
	count of i s.t. $shape(pre_1(x_i)) = A$ and $y_i = I$	1	1
	count of i s.t. $shape(pre_1(x_i)) = A$ and $y_i = O$	0	1
	$\llbracket shape(pre_1(x_1)) = A \land y_1 = B rbracket$	1	0
	$\llbracket shape(pre_1(x_1)) = A \land y_1 = O \rrbracket$	0	1
gazetteer:	count of <i>i</i> s.t. x_i is in the gazetteer and $y_i = B$	2	1
	count of i s.t. x_i is in the gazetteer and $y_i = I$	0	0
	count of i s.t. x_i is in the gazetteer and $y_i = 0$	0	1
	$ ext{count of } i ext{ s.t. } x_i = sent ext{ and } y_i = O$	1	1

(What is Not A Linear Model?)

 Probabilistic models with hidden variables, requiring general MAP inference:

$$\arg \max_{\boldsymbol{y}} p(\boldsymbol{y} \mid \boldsymbol{x}) = \arg \max_{\boldsymbol{y}} \sum_{\boldsymbol{z}} p(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$$

• Models based on non-linear kernels $\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \sum_{i=1}^{N} \alpha_i K\left(\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle, \langle \boldsymbol{x}, \boldsymbol{y} \rangle\right)$

Lecture Outline

- ✓ Viterbi algorithm
- ✓ Decoding more generally
- 3. Five views

1. Probabilistic Graphical Models

- View the linguistic structure as a collection of random variables that are interdependent.
- Represent interdependencies as a directed or undirected graphical model.
- Conditional probability tables (BNs) or factors (MNs) encode the probability distribution.
- Use standard techniques from PGMs to decode.

Inference in Graphical Models

- General algorithm for exact MPE inference: variable elimination.
 - Iteratively solve for the best values of each variable conditioned on values of "preceding" neighbors.
 - Then trace back.
 - Challenge: order the r.v.s for efficiency!

The Viterbi algorithm is an instance of max-product variable elimination!

MAP is Linear Decoding

• Bayesian network:

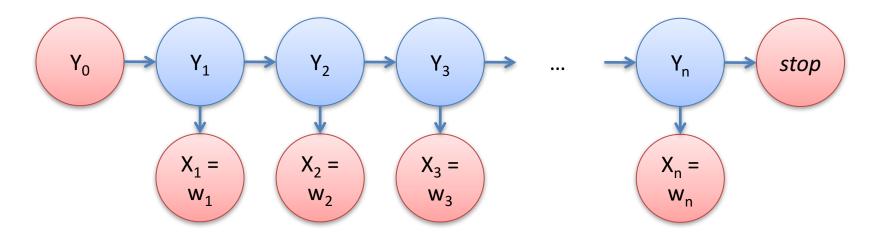
$$\sum_{i} \log p(x_i \mid \text{parents}(X_i)) + \sum_{j} \log p(y_j \mid \text{parents}(Y_j))$$

• Markov network:

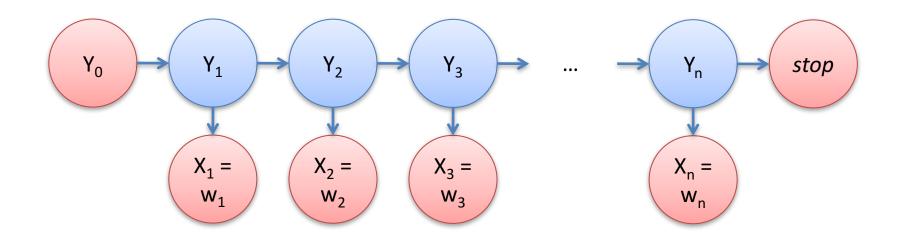
$$\sum_{C} \log \phi_C \left(\{x_i\}_{i \in C}, \{y_j\}_{j \in C} \right)$$

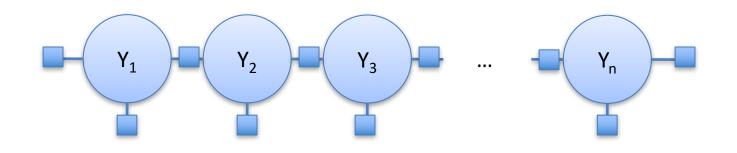
• This works if every variable is in **X** or **Y**.

- When we eliminate Y₁, we take a product of three relevant factors.
 - $\gamma(Y_1 | start)$
 - η(w₁ | Y₁), reduced to the observed value w₁
 - γ(Y₂ | Y₁)

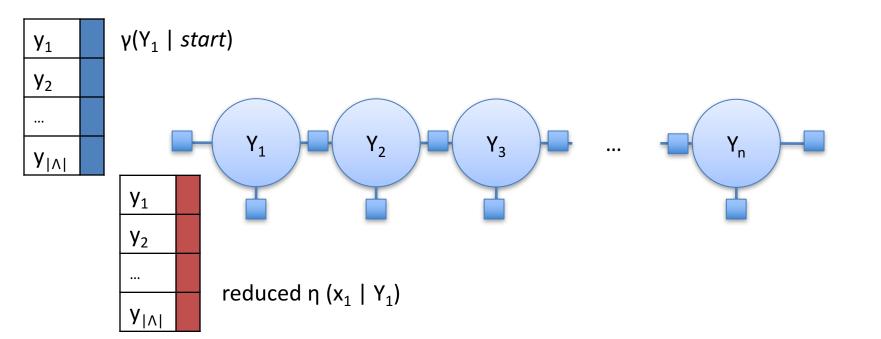


Factor Representation

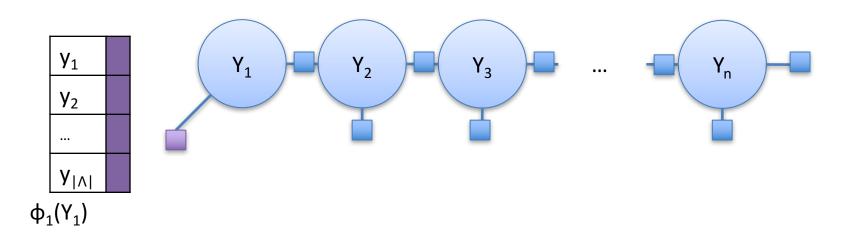




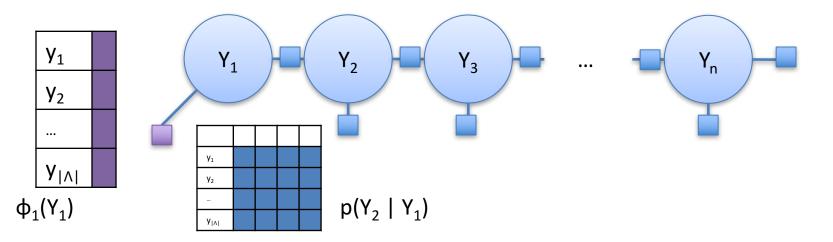
• When we eliminate Y₁, we first take a product of two factors that only involve Y₁.



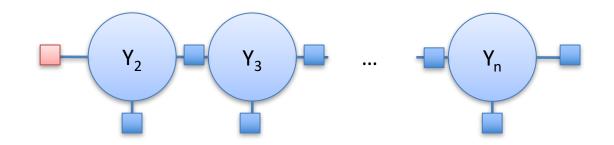
- When we eliminate Y₁, we first take a product of two factors that only involve Y₁.
- This is the Viterbi probability vector for Y₁.



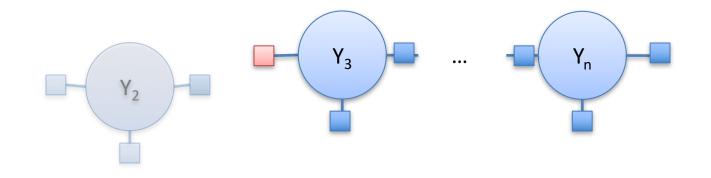
- When we eliminate Y₁, we first take a product of two factors that only involve Y₁.
- This is the Viterbi probability vector for Y₁.
- Eliminating Y₁ equates to solving the Viterbi probabilities for Y₂.



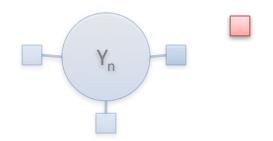
- Product of all factors involving Y₁, then reduce.
 - $\phi_2(Y_2) = \max_{y \in Val(Y_1)} (\phi_1(y) \times p(Y_2 | y))$
 - This factor holds Viterbi probabilities for Y₂.



- When we eliminate Y₂, we take a product of the analogous two relevant factors.
- Then reduce.
 - $\phi_3(Y_3) = \max_{y \in Val(Y_2)} (\phi_2(y) \times p(Y_3 | y))$



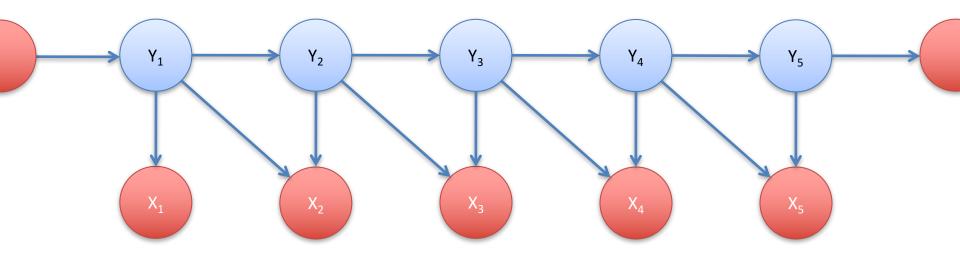
- At the end, we have one final factor with one row, ϕ_{n+1} .
- This is the score of the best sequence.
- Use backtrace to recover values.



Why Think This Way?

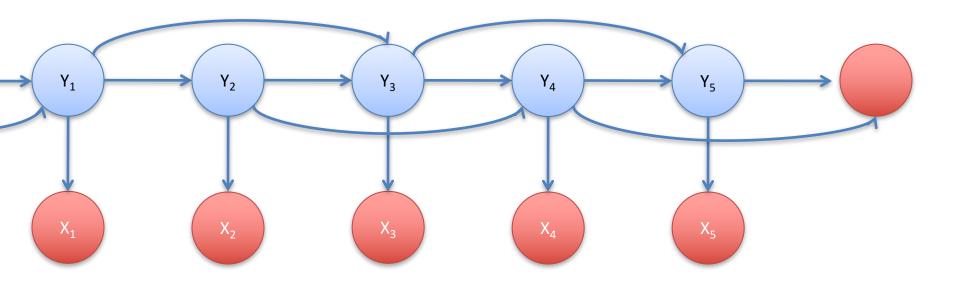
- Easy to see how to generalize HMMs.
 - More evidence
 - More factors
 - More hidden structure
 - More dependencies
- Probabilistic interpretation of factors is *not* central to finding the "best" Y ...
 - Many factors are not conditional probability tables.

Generalization Example 1



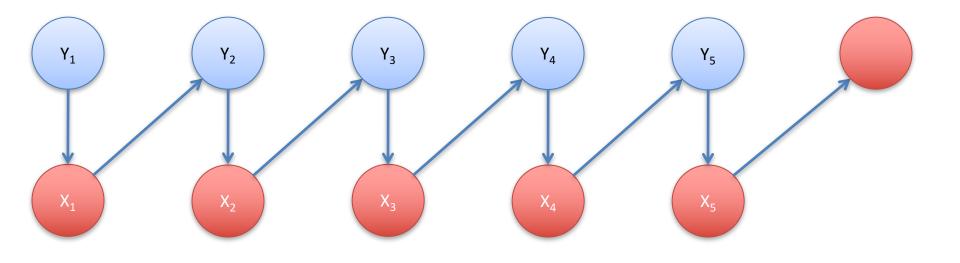
• Each word also depends on previous state.

Generalization Example 2



• "Trigram" HMM

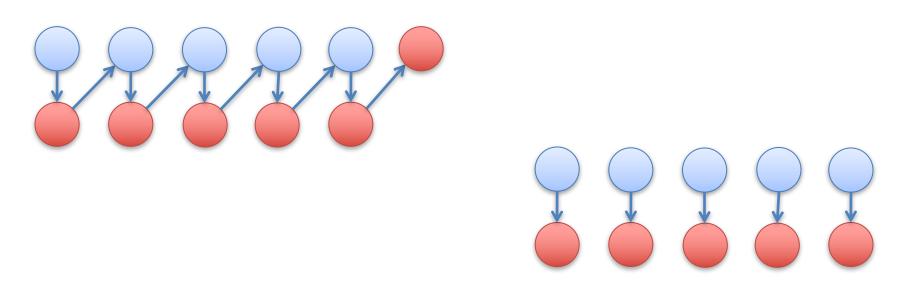
Generalization Example 3



 Aggregate bigram model (Saul and Pereira, 1997)

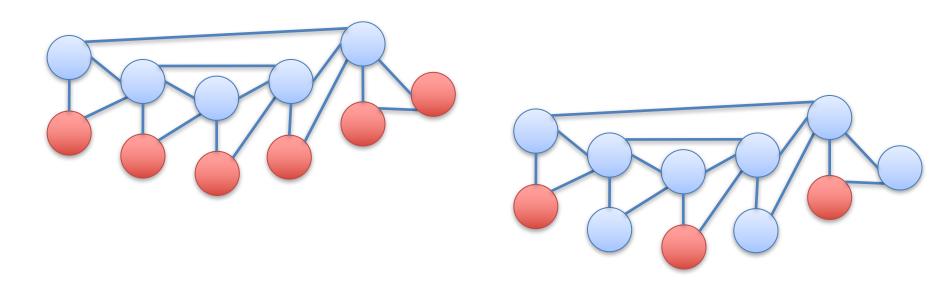
Inference in Graphical Models

- Remember: more edges make inference more expensive.
 - Fewer edges means stronger independence.
- Really pleasant:



Inference in Graphical Models

- Remember: more edges make inference more expensive.
 - Fewer edges means stronger independence.
- Really unpleasant:



Decoding, Continued

September 5, 2013

Lecture Outline

- ✓ Viterbi algorithm
- ✓ Decoding more generally
- 3. Five views
 - ✓ MPE/MAP inference in a graphical model

2. Polytopes

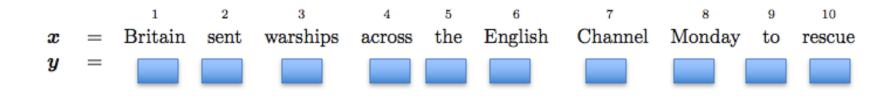
"Parts"

 Assume that feature function g breaks down into local parts.

$$\mathbf{g}(oldsymbol{x},oldsymbol{y}) \;\;=\;\; \sum_{i=1}^{\# parts(oldsymbol{x})} \mathbf{f}(\Pi_i(oldsymbol{x},oldsymbol{y}))$$

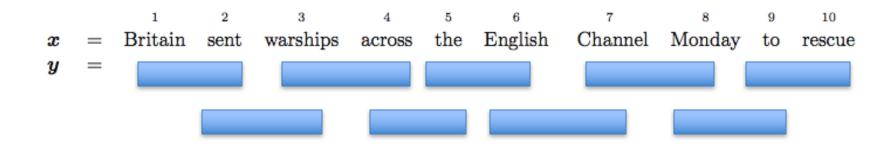
- Each part has an alphabet of possible values.
 - Decoding is choosing values for all parts, with consistency constraints.
 - (In the graphical models view, a part is a clique.)

Example



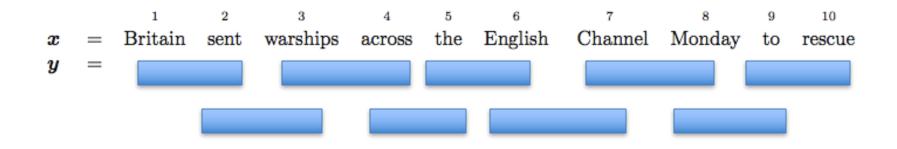
- One part per word, each is in {B, I, O}
- No features look at multiple parts
 Fast inference
 - Not very expressive

Example



- One part per bigram, each is in {BB, BI, BO, IB, II, IO, OB, OO}
- Features and constraints can look at pairs
 - Slower inference
 - A bit more expressive

Geometric View



- Let z_{i,π} be 1 if part *i* takes value π and 0 otherwise.
- **z** is a vector in {0, 1}^N
 - -N = total number of localized part values
 - Each z is a vertex of the unit cube

Score is Linear in z

$$\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \mathbf{f}(\Pi_{i}(\boldsymbol{x}, \boldsymbol{y}))$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \text{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) \mathbf{1} \{\Pi_{i}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\pi} \}$$
not really
equal; need
to transform
back to get \mathbf{y}

$$= \arg \max_{\mathbf{z} \in \mathcal{Z}_{\mathbf{x}}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \text{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) z_{i,\boldsymbol{\pi}}$$

$$= \arg \max_{\mathbf{z} \in \mathcal{Z}_{\mathbf{x}}} \mathbf{w}^{\top} \mathbf{F}_{\mathbf{x}} \mathbf{z}$$

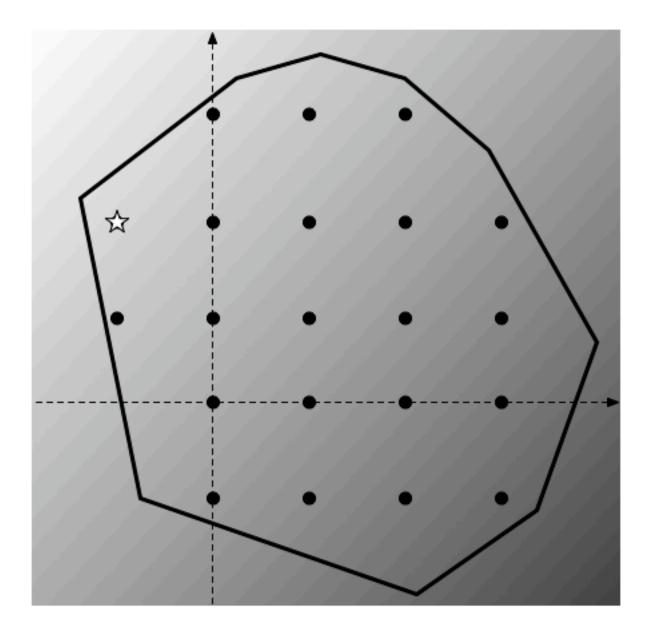
$$= \arg \max_{\mathbf{z} \in \mathcal{Z}_{\mathbf{x}}} (\mathbf{w}^{\top} \mathbf{F}_{\mathbf{x}}) \mathbf{z}$$

Polyhedra

• Not all vertices of the *N*-dimensional unit cube satisfy the constraints.

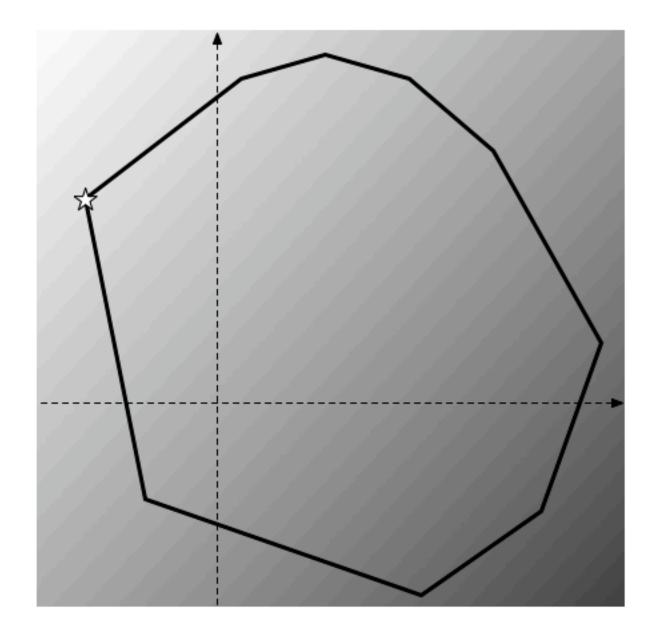
- E.g., can't have $z_{1,BI} = 1$ and $z_{2,BI} = 1$

- Sometimes we can write down a small (polynomial number) of linear constraints on z.
- Result: linear objective, linear constraints, integer constraints ...



Integer Linear Programming

- Very easy to add new constraints and non-local features.
- Many decoding problems have been mapped to ILP (sequence labeling, parsing, ...), but it's not always trivial.
- NP-hard in general.
 - But there are packages that often work well in practice (e.g., CPLEX)
 - Specialized algorithms in some cases
 - LP relaxation for approximate solutions



Remark

- Graphical models assumed a probabilistic interpretation
 - Though they are not always learned using a probabilistic interpretation!
- The polytope view is agnostic about how you interpret the weights.

- It only says that the decoding problem is an ILP.

3. Weighted Parsing

Grammars

- Grammars are often associated with natural language parsing, but they are extremely powerful for imposing constraints.
- We can add weights to them.
 - HMMs are a kind of weighted regular grammar (closely connected to WFSAs)
 - PCFGs are a kind of weighted CFG
 - Many, many more.
- Weighted parsing: find the maximum-weighted derivation for a string **x**.

Decoding as Weighted Parsing

- Every valid y is a grammatical derivation (parse) for x.
 - HMM: sequence of "grammatical" states is one allowed by the transition table.
- Augment parsing algorithms with weights and find the best parse.

The Viterbi algorithm is an instance of recognition by a weighted grammar!

BIO Tagging as a CFG

 Weighted (or probabilistic) CKY is a dynamic programming algorithm very similar in structure to classical CKY.

4. Paths and Hyperpaths

Best Path

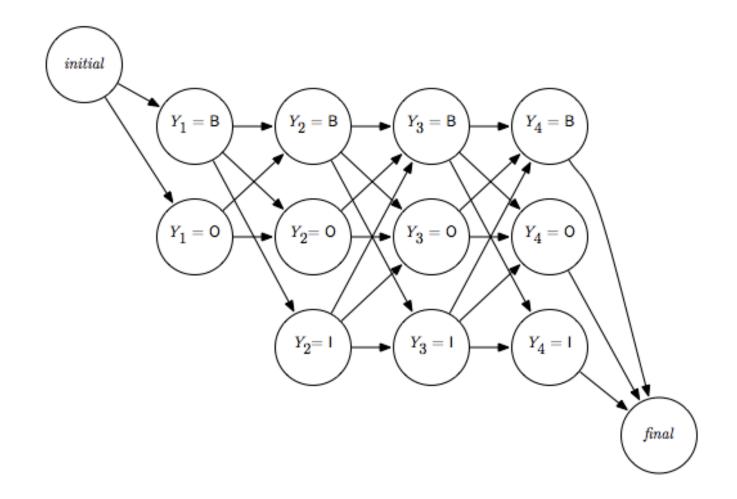
- General idea: take **x** and build a graph.
- Score of a path factors into the edges.

 $\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{e \in \text{Edges}} \mathbf{f}(e) \mathbf{1} \{ e \text{ is crossed by } \boldsymbol{y} \text{'s path} \}$

• Decoding is finding the *best* path.

The Viterbi algorithm is an instance of finding a best path!

"Lattice" View of Viterbi



A Generic Best Path Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}$, start vertex v_0
- Output: d : V $\rightarrow \mathbb{R}$ (shortest path function) and back pointers b : V \rightarrow V

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
while d has not converged:
pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
```

Ordering Updates

- Naïve ways of choosing edges will lead to cyclic updating and gross inefficiency!
- Before considering various ways of doing it, let's consider how the Viterbi algorithm is essentially solving the same problem.

Viterbi Algorithm (In the Style of A Best Path Algorithm)

• Input:

- − directed graph G = (V, E) where each vertex v = (q, t), q ∈ Q ∪ {∅}, t ∈ {-1, 0, 1, ..., n} and each edge (u, v) = ((q, t), (q', t + 1))
- $\begin{array}{ll} & \mbox{cost}: E \rightarrow \mathbb{R}, \mbox{defined by} \\ & \mbox{cost}((q, t), (q', t+1)) = -\log \gamma(q' \mid q) \log \eta(s_{t+1} \mid q) \log (1 \xi(q)) \\ & \mbox{cost}((q, n-1), (q', n)) = -\log \gamma(q' \mid q) \log \eta(s_{t+1} \mid q) \log \xi(q') \\ & \mbox{cost}((\varnothing, -1), (q, 0)) = -\log \pi(q) \end{array}$
- fixed start vertex $v_0 = (\emptyset, -1)$
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
perform a topological sort on V
while d has not converged: for each v in top-sort order:
pick an arbitrary edge (u, v)
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
// d(v) and b(v) are now known
```


The Viterbi Trick

- From a "best path" perspective, Viterbi is:
 - defining the vertices and edges to have special structure (state/time step)
 - assigning costs based on HMM weights and the specific input string $s_1 \dots s_n$
 - ordering the edges cleverly to make things efficient
- Note also: Viterbi's graph has no cycles.

Another Variant: "Forward" Updating

 After topological sort, can also choose all edges going out of current node.

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
perform a topological sort on V
for each u in top-sort order:
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
```

Memoized Recursion

- Input: directed graph G = (V, E), cost : E $\rightarrow \mathbb{R}$, start vertex v₀, target vertex v_t
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

```
for all v \in V \setminus \{v_0\}, d(v) := \emptyset and b(v) := \emptyset
set d(v_0) = 0
memoize(v_{+})
memoize(v):
    // guaranteed to return best-cost path score for v
    if d(v) = \emptyset:
     d(v) := ∞
     for each (u, v) \in E:
            if memoize(u) + cost(u, v) < d(v):
                  d(v) := d(u) + cost(u, v)
                  b(v) := u
    return d(v)
```

A Generic Best Path Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}$, start vertex v_0
- Output: d : V $\rightarrow \mathbb{R}$ (shortest path function) and back pointers b : V \rightarrow V

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
while d has not converged:
pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
```

Dijkstra's Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}_{\geq 0}$ (important!), start vertex v_0
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
Q := priority queue on V ordered by d (lower cost = higher priority)
while d has not converged: while Q is not empty:
pick an arbitrary edge (u, v)
u := extract-min(Q)
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
update v's priority in Q
```

A* Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}_{\geq 0}$, start vertex v₀, target vertex v_t, heuristic h : V $\rightarrow \mathbb{R}_{\geq 0}$ such that h(v) \leq best-cost(v, v_t)
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

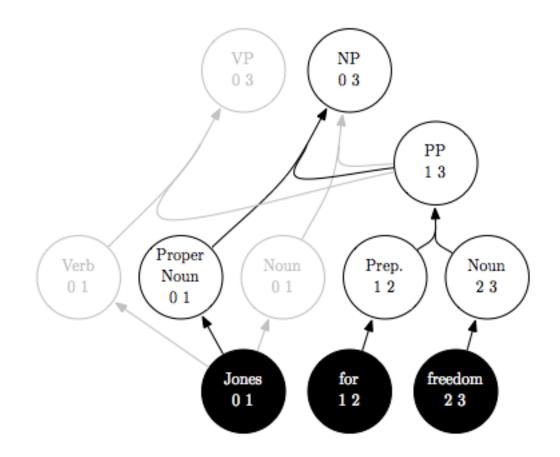
```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
Q := priority queue on V ordered by d + h (lower cost = higher priority)
while Q is not empty:
u := extract-min(Q)
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
update v's priority in Q
```

Minimum Cost Hyperpath

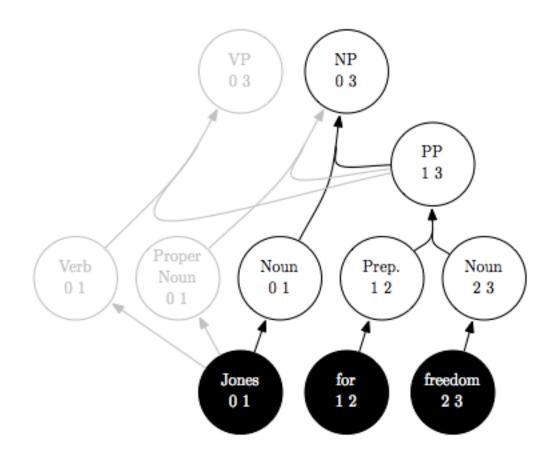
- General idea: take **x** and build a hypergraph.
- Score of a hyperpath factors into the hyperedges.
- Decoding is finding the best *hyperpath*.

• This connection was elucidated by Klein and Manning (2002).

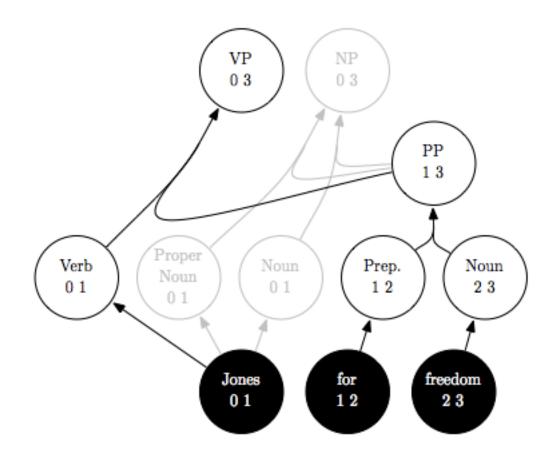




cf. "Dean for democracy"



Forced to work on his thesis, sunshine streaming in the window, Mike experienced a ...



Forced to work on his thesis, sunshine streaming in the window, Mike began to ...

Why Hypergraphs?

- Useful, compact encoding of the hypothesis space.
 - Build hypothesis space using local features, maybe do some filtering.
 - Pass it off to another module for more finegrained scoring with richer or more expensive features.

5. Weighted Logic Programming

Logic Programming

• Start with a set of axioms and a set of inference rules.

$$\begin{array}{lll} \forall A, C, & \quad \operatorname{ancestor}(A, C) & \Leftarrow & \operatorname{parent}(A, C) \\ \forall A, C, & \quad \operatorname{ancestor}(A, C) & \Leftarrow & \bigvee_B \operatorname{ancestor}(A, B) \wedge \operatorname{parent}(B, C) \end{array}$$

- The goal is to prove a specific theorem, goal.
- Many approaches, but we assume a *deductive* approach.
 - Start with axioms, iteratively produce more theorems.

$$\begin{array}{lll} \forall \ell \in \Lambda, & \mathsf{v}(\ell, 1) &= & \mathsf{labeled-word}(x_1, \ell) \\ \forall \ell \in \Lambda, & \mathsf{v}(\ell, i) &= & \bigvee_{\ell' \in \Lambda} \mathsf{v}(\ell', i - 1) \wedge \mathsf{label-bigram}(\ell', \ell) \wedge \mathsf{labeled-word}(x_i, \ell) \\ & \mathsf{goal} &= & \bigvee_{\ell \in \Lambda} \mathsf{v}(\ell, n) \end{array}$$

Weighted Logic Programming

- Twist: axioms have weights.
- Want the proof of goal with the best score:

$$\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{a \in \text{Axioms}} \mathbf{f}(a) freq(a; \boldsymbol{y})$$

 Note that axioms can be used more than once in a proof (y).

Whence WLP?

- Shieber, Schabes, and Pereira (1995): many parsing algorithms can be understood in the same deductive logic framework.
- Goodman (1999): add weights in a semiring, get many useful NLP algorithms.
- Eisner, Goldlust, and Smith (2004, 2005): semiring-generic algorithms, Dyna.

Dynamic Programming

- Most views (exception is polytopes) can be understood as DP algorithms.
 - The low-level *procedures* we use are often DP.
 - Even DP is too high-level to know the best way to implement.
- Break a problem into slightly smaller problems with **optimal substructure**.
 - Best path to v depends on best paths to all u such that $(u,v) \in E$.
- Overlapping subproblems: each subproblem gets used repeatedly, and there aren't too many of them.

Dynamic Programming

- Three main strategies for DP:
 - Viterbi, Levenshtein edit distance, CKY: predefined, "clever" ordering.
 - Memoization
 - Agenda (Dijkstra' s algorithm, A*)
- Things to remember in general:
 - The hypergraph may too big to represent explicitly; exhaustive calculation may be too expensive.
 - The hypergraph may or may not have properties that make "clever" orderings possible.
 - DP does not imply polynomial time and space! Most common approximations when the desired state space is too big: beam search, cube pruning, agendas with early stopping, ...

Summary

- Decoding is the general problem of choosing a complex structure.
 - Linguistic analysis, machine translation, speech recognition, ...
 - Statistical models are usually involved (not necessarily probabilistic).
- No perfect general view, but much can be gained through a combination of views.
- First question: can I solve it exactly with DP?