
Approaches to Inference

inference

exact

variable
elimination

dynamic
programs

ILP

approximate

randomized

MCMC

Gibbs

importance
sampling

randomized
search

simulated
annealing

deterministic

variational

mean field

loopy belief
propagation

LP
relaxations

dual
decomp.

local search

beam search

red = hard inference

blue = soft inference

purple = both

Hidden Markov Model

• X and Y are both sequences of symbols
– X is a sequence from the vocabulary Σ

– Y is a sequence from the state space Λ

• Parameters:
– Transitions γ including γ(stop | s), γ(s | start)

– Emissions η

Hidden Markov Model

• The joint model’s independence assumptions
are easy to capture with a Bayesian network.

Y1

X1

Y0 Y2

X2

Y3

X3

Yn

Xn

stop…

Hidden Markov Model

• The MPE/MAP inference problem is to find
the most probable value of Y given X = x.

Y1

X1 =
w1

Y0 Y2

X2 =
w2

Y3

X3 =
w3

Yn

Xn =
wn

stop…

Hidden Markov Model

• The MPE/MAP inference problem is to find
the most probable value of Y given X = x.

• Markov network:

Y1

X1 =
w1

Y0 Y2

X2 =
w2

Y3

X3 =
w3

Yn

Xn =
wn

stop…

Markov Network

• A different graphical model representation; undirected.
Vertices are still r.v.s.

• Every clique C in the graph gets a local scoring function
φC that maps assignments to values.

• This score can be globally renormalized to obtain a
probabilistic interpretation. (Not today.)

Restriction #1

1. The score function factors locally.

– The more locally, the better!

Linear Models

• Define a feature vector function g that maps (x, y) pairs
into d-dimensional real space.

• Score is linear in g(x, y).

• Results:
– decoding seeks y to maximize the score.

– learning seeks w to … do something we’ll talk about later.

• Extremely general!

Generic Noisy Channel as Linear Model

• Of course, the two probability terms are
typically composed of “smaller” factors; each
can be understood as an exponentiated
weight.

Max Ent Models as Linear Models

HMMs as Linear Models

Restrictions #1, #2

1. The score function factors locally.

– The more locally, the better!

2. The local scoring functions are linear in the
features.

Running Example

• BIO sequence labeling, here applied to NER

• Often solved with HMMs, CRFs, M3Ns …

Factorization

Assumption:

Score is a sum of local “part” scores

Parts = nodes and edges in a graph, rules in a tree

space of feasible outputs

Named Entity Recognition

Apple Computer bought Smart Systems Inc. located in Arkansas.

B-ORG I-ORG O B-ORG I-ORG I-ORG O O I-LOC

Named Entity Recognition

Apple Computer bought Smart Systems Inc. located in Arkansas.

B-ORG I-ORG O B-ORG I-ORG I-ORG O O I-LOC

(What is Not A Linear Model?)

• Probabilistic models with hidden variables,
requiring general MAP inference:

• Models based on non-linear kernels

• Most neural networks (those with non-linear
activation functions)

Lecture Outline

✓Viterbi algorithm

✓Decoding more generally

3. Five views

1. Probabilistic Graphical Models

• View the linguistic structure as a collection of
random variables that are interdependent.

• Represent interdependencies as a directed or
undirected graphical model.

• Conditional probability tables (BNs) or factors
(MNs) encode the probability distribution.

• Use standard techniques from PGMs to
decode.

Inference in Graphical Models

• General algorithm for exact MPE inference:
variable elimination.
– Iteratively solve for the best values of each

variable conditioned on values of “preceding”
neighbors.

– Then trace back.

– Challenge: order the r.v.s for efficiency!

The Viterbi algorithm is an instance of
max-product variable elimination!

Hidden Markov Model

• When we eliminate Y1, we take a product of
three relevant factors.

• γ(Y1 | start)

• η(w1 | Y1), reduced to the observed value w1

• γ(Y2 | Y1)

Y1

X1 =
w1

Y0 Y2

X2 =
w2

Y3

X3 =
w3

Yn

Xn =
wn

stop…

Factor Representation

Y1

X1 =
w1

Y0 Y2

X2 =
w2

Y3

X3 =
w3

Yn

Xn =
wn

stop…

Y1 Y2 Y3 Yn…

Hidden Markov Model

• When we eliminate Y1, we first take a product
of two factors that only involve Y1.

Y1 Y2 Y3 Yn…

y1

y2

…

y|Λ|

y1

y2

…

y|Λ|

reduced η (x1 | Y1)

γ(Y1 | start)

Hidden Markov Model

• When we eliminate Y1, we first take a product
of two factors that only involve Y1.

• This is the Viterbi probability vector for Y1.

Y1 Y2 Y3 Yn…y1

y2

…

y|Λ|

φ1(Y1)

Hidden Markov Model

• When we eliminate Y1, we first take a product
of two factors that only involve Y1.

• This is the Viterbi probability vector for Y1.

• Eliminating Y1 equates to solving the Viterbi
probabilities for Y2.

Y1 Y2 Y3 Yn…y1

y2

…

y|Λ|

φ1(Y1)

y1

y2

…

y|Λ|

p(Y2 | Y1)

Hidden Markov Model

• Product of all factors involving Y1, then
reduce.

• φ2(Y2) = maxy∈Val(Y1) (φ1(y)⨉ p(Y2 | y))

• This factor holds Viterbi probabilities for Y2.

Y2 Y3 Yn…

Y2

Hidden Markov Model

• When we eliminate Y2, we take a product of
the analogous two relevant factors.

• Then reduce.

• φ3(Y3) = maxy∈Val(Y2) (φ2(y) ⨉ p(Y3 | y))

Y3 Yn…

Yn

Hidden Markov Model

• At the end, we have one final factor with one
row, φn+1.

• This is the score of the best sequence.

• Use backtrace to recover values.

Why Think This Way?

• Easy to see how to generalize HMMs.
– More evidence

– More factors

– More hidden structure

– More dependencies

• Probabilistic interpretation of factors is not
central to finding the “best” Y …
– Many factors are not conditional probability

tables.

Generalization Example 1

• Each word also depends on previous state.

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5

Generalization Example 2

• “Trigram” HMM

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5

Generalization Example 3

• Aggregate bigram model (Saul and Pereira,
1997)

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5

Inference in Graphical Models

• Remember: more edges make inference more
expensive.

– Fewer edges means stronger independence.

• Really pleasant:

Inference in Graphical Models

• Remember: more edges make inference more
expensive.

– Fewer edges means stronger independence.

• Really unpleasant:

Lecture Outline

✓Viterbi algorithm

✓Decoding more generally

3. Five views

✓ MPE/MAP inference in a graphical model

2. Polytopes

“Parts”

• Assume that feature function g breaks down
into local parts.

• Each part has an alphabet of possible values.

– Decoding is choosing values for all parts, with
consistency constraints.

– (In the graphical models view, a part is a clique.)

Example

• One part per word, each is in {B, I, O}

• No features look at multiple parts

– Fast inference

– Not very expressive

Example

• One part per bigram, each is in {BB, BI, BO, IB,
II, IO, OB, OO}

• Features and constraints can look at pairs
– Slower inference

– A bit more expressive

Geometric View

• Let zi,π be 1 if part i takes value π and 0
otherwise.

• z is a vector in {0, 1}N

– N = total number of localized part values

– Each z is a vertex of the unit cube

Score is Linear in z

not really
equal; need
to transform
back to get y

Polyhedra

• Not all vertices of the N-dimensional unit cube
satisfy the constraints.

– E.g., can’t have z1,BI = 1 and z2,BI = 1

• Sometimes we can write down a small
(polynomial number) of linear constraints on
z.

• Result: linear objective, linear constraints,
integer constraints …

Integer Linear Programming

• Very easy to add new constraints and non-local
features.

• Many decoding problems have been mapped to
ILP (sequence labeling, parsing, …), but it’s not
always trivial.

• NP-hard in general.
– But there are packages that often work well in

practice (e.g., CPLEX)

– Specialized algorithms in some cases

– LP relaxation for approximate solutions

Remark

• Graphical models assumed a probabilistic
interpretation

– Though they are not always learned using a
probabilistic interpretation!

• The polytope view is agnostic about how you
interpret the weights.

– It only says that the decoding problem is an ILP.

3. Weighted Parsing

Grammars

• Grammars are often associated with natural
language parsing, but they are extremely
powerful for imposing constraints.

• We can add weights to them.
– HMMs are a kind of weighted regular grammar

(closely connected to WFSAs)

– PCFGs are a kind of weighted CFG

– Many, many more.

• Weighted parsing: find the maximum-weighted
derivation for a string x.

Decoding as Weighted Parsing

• Every valid y is a grammatical derivation
(parse) for x.

– HMM: sequence of “grammatical” states is one
allowed by the transition table.

• Augment parsing algorithms with weights and
find the best parse.

The Viterbi algorithm is an instance of
recognition by a weighted grammar!

BIO Tagging as a CFG

• Weighted (or probabilistic) CKY is a dynamic
programming algorithm very similar in
structure to classical CKY.

4. Paths and Hyperpaths

Best Path

• General idea: take x and build a graph.

• Score of a path factors into the edges.

• Decoding is finding the best path.

The Viterbi algorithm is an instance of
finding a best path!

“Lattice” View of Viterbi

A Generic Best Path Algorithm

• Input: directed graph G = (V, E), cost : E → ℝ, start vertex v0

• Output: d : V → ℝ (shortest path function) and back pointers
b : V → V

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
while d has not converged:

pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u

Ordering Updates

• Naïve ways of choosing edges will lead to
cyclic updating and gross inefficiency!

• Before considering various ways of doing it,
let's consider how the Viterbi algorithm is
essentially solving the same problem.

Viterbi Algorithm
(In the Style of A Best Path Algorithm)

• Input:
– directed graph G = (V, E) where

each vertex v = (q, t), q ∈ Q ∪ {∅}, t ∈ {-1, 0, 1, …, n}
and each edge (u, v) = ((q, t), (q', t + 1))

– cost : E → ℝ, defined by
cost((q, t), (q', t + 1)) = – log γ(q' | q) – log η(st+1 | q) – log (1 - ξ(q))
cost((q, n - 1), (q', n)) = – log γ(q' | q) – log η(st+1 | q) – log ξ(q')
cost((∅, -1), (q, 0)) = – log π(q)

– fixed start vertex v0 = (∅, -1)

• Output: d : V → ℝ (shortest path function) and back pointers b : V → V

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
perform a topological sort on V
while d has not converged: for each v in top-sort order:

pick an arbitrary edge (u, v)
for each (u, v) ∈ E:

if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u

// d(v) and b(v) are now known

The Viterbi Trick

• From a “best path” perspective, Viterbi is:

– defining the vertices and edges to have special
structure (state/time step)

– assigning costs based on HMM weights and the
specific input string s1 … sn

– ordering the edges cleverly to make things
efficient

• Note also: Viterbi's graph has no cycles.

Another Variant:
“Forward”Updating

• After topological sort, can also choose all edges going out
of current node.

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
perform a topological sort on V
for each u in top-sort order:

for each (u, v) ∈ E:
if d(u) + cost(u, v) < d(v):

d(v) := d(u) + cost(u, v)
b(v) := u

Memoized Recursion

• Input: directed graph G = (V, E), cost : E → ℝ, start vertex v0, target vertex vt

• Output: d : V → ℝ (shortest path function) and back pointers b : V → V

for all v ∈ V \ {v0}, d(v) := ∅ and b(v) := ∅
set d(v0) = 0
memoize(vt)

memoize(v):
// guaranteed to return best-cost path score for v
if d(v) = ∅:

d(v) := ∞
for each (u, v) ∈ E:

if memoize(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u

return d(v)

A Generic Best Path Algorithm

• Input: directed graph G = (V, E), cost : E → ℝ, start vertex v0

• Output: d : V → ℝ (shortest path function) and back pointers
b : V → V

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
while d has not converged:

pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u

Dijkstra's Algorithm

• Input: directed graph G = (V, E), cost : E → ℝ≥0 (important!), start vertex v0

• Output: d : V → ℝ (shortest path function) and back pointers b : V → V

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
Q := priority queue on V ordered by d (lower cost = higher priority)
while d has not converged: while Q is not empty:

pick an arbitrary edge (u, v)
u := extract-min(Q)
for each (u, v) ∈ E:
if d(u) + cost(u, v) < d(v):

d(v) := d(u) + cost(u, v)
b(v) := u
update v's priority in Q

A* Algorithm

• Input: directed graph G = (V, E), cost : E → ℝ≥0, start vertex v0, target
vertex vt, heuristic h : V → ℝ≥0 such that h(v) ≤ best-cost(v, vt)

• Output: d : V → ℝ (shortest path function) and back pointers b : V → V

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
Q := priority queue on V ordered by d + h (lower cost = higher priority)
while Q is not empty:

u := extract-min(Q)
for each (u, v) ∈ E:
if d(u) + cost(u, v) < d(v):

d(v) := d(u) + cost(u, v)
b(v) := u
update v's priority in Q

Minimum Cost Hyperpath

• General idea: take x and build a hypergraph.

• Score of a hyperpath factors into the
hyperedges.

• Decoding is finding the best hyperpath.

• This connection was elucidated by Klein and
Manning (2002).

Parsing as a Hypergraph

Parsing as a Hypergraph

cf. “Dean for democracy”

Parsing as a Hypergraph

Forced to work on his thesis, sunshine streaming in the window,
Mike experienced a …

Parsing as a Hypergraph

Forced to work on his thesis, sunshine streaming in the window,
Mike began to …

Why Hypergraphs?

• Useful, compact encoding of the hypothesis
space.

– Build hypothesis space using local features, maybe
do some filtering.

– Pass it off to another module for more fine-
grained scoring with richer or more expensive
features.

5. Weighted Logic Programming

Logic Programming

• Start with a set of axioms and a set of inference
rules.

• The goal is to prove a specific theorem, goal.

• Many approaches, but we assume a deductive
approach.
– Start with axioms, iteratively produce more theorems.

Weighted Logic Programming

• Twist: axioms have weights.

• Want the proof of goal with the best score:

• Note that axioms can be used more than once
in a proof (y).

Whence WLP?

• Shieber, Schabes, and Pereira (1995): many
parsing algorithms can be understood in the
same deductive logic framework.

• Goodman (1999): add weights in a semiring,
get many useful NLP algorithms.

• Eisner, Goldlust, and Smith (2004, 2005):
semiring-generic algorithms, Dyna.

Dynamic Programming

• Most views (exception is polytopes) can be
understood as DP algorithms.
– The low-level procedures we use are often DP.

– Even DP is too high-level to know the best way to
implement.

• Break a problem into slightly smaller problems with
optimal substructure.
– Best path to v depends on best paths to all u such

that (u,v) ∈ E.
• Overlapping subproblems: each subproblem gets

used repeatedly, and there aren’t too many of them.

Dynamic Programming

• Three main strategies for DP:
– Viterbi, Levenshtein edit distance, CKY: predefined,
“clever” ordering.

– Memoization
– Agenda (Dijkstra’s algorithm, A*)

• Things to remember in general:
– The hypergraph may too big to represent explicitly;

exhaustive calculation may be too expensive.
– The hypergraph may or may not have properties that make

“clever” orderings possible.
– DP does not imply polynomial time and space! Most

common approximations when the desired state space is
too big: beam search, cube pruning, agendas with early
stopping, ...

Summary

• Decoding is the general problem of choosing a
complex structure.
– Linguistic analysis, machine translation, speech

recognition, …

– Statistical models are usually involved (not
necessarily probabilistic).

• No perfect general view, but much can be
gained through a combination of views.

• First question: can I solve it exactly with DP?

