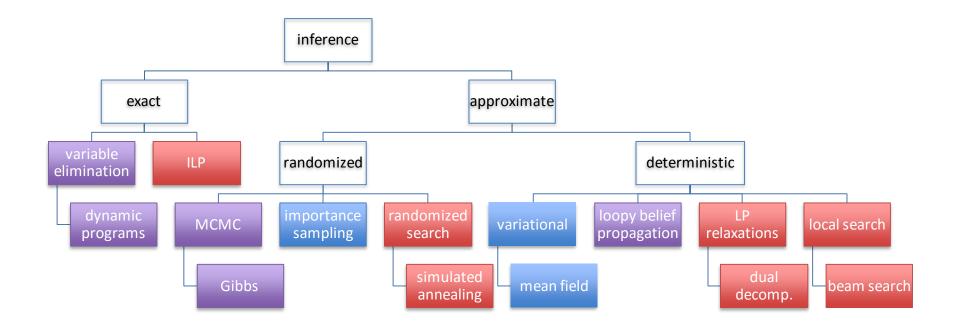
Approaches to Inference



red = hard inference blue = soft inference purple = both

- X and Y are both sequences of symbols
 - \boldsymbol{X} is a sequence from the vocabulary $\boldsymbol{\Sigma}$
 - \boldsymbol{Y} is a sequence from the state space Λ

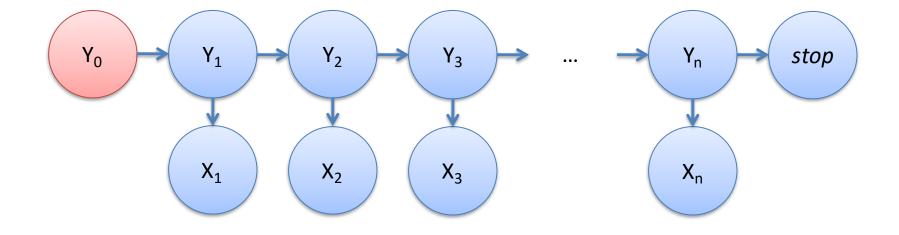
$$p(\mathbf{Y} = \mathbf{s}, \mathbf{X} = \mathbf{w}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$

- Parameters:
 - Transitions $\boldsymbol{\gamma}$ including $\gamma(stop \mid s), \gamma(s \mid start)$
 - Emissions **ŋ**

• The joint model's independence assumptions are easy to capture with a Bayesian network.

$$p(\mathbf{Y} = \mathbf{s}, \mathbf{X} = \mathbf{w}) =$$

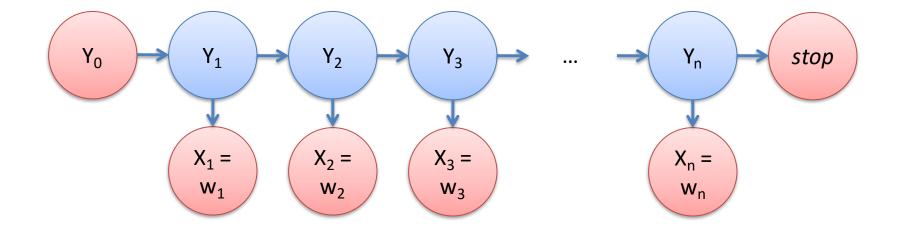
$$p(\text{start}, s_1, w_1, s_2, w_2, \dots, s_n, w_n \text{stop}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$



 The MPE/MAP inference problem is to find the most probable value of Y given X = x.

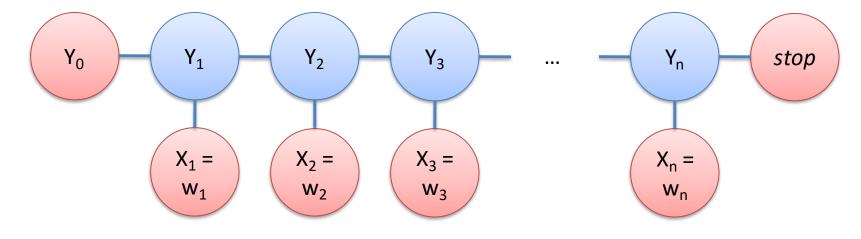
$$p(\mathbf{Y} = \mathbf{s}, \mathbf{X} = \mathbf{w}) =$$

$$p(\text{start}, s_1, w_1, s_2, w_2, \dots, s_n, w_n \text{stop}) = \prod_{i=1}^{n+1} \eta(w_i \mid s_i) \times \gamma(s_i \mid s_{i-1})$$



 The MPE/MAP inference problem is to find the most probable value of Y given X = x.

• Markov network:



Markov Network

- A different graphical model representation; undirected. Vertices are still r.v.s.
- Every clique C in the graph gets a *local* scoring function ϕ_c that maps assignments to values.

$$mulscore(\boldsymbol{x}, \boldsymbol{y}) = \prod_{C \in \mathcal{C}} \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$
$$addscore(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \log \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

• This score can be *globally* renormalized to obtain a probabilistic interpretation. (Not today.)

Restriction #1

1. The score function *factors locally*.

- The more locally, the better!

$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \log \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

Linear Models

- Define a feature vector function **g** that maps (**x**, **y**) pairs into d-dimensional real space.
- Score is linear in g(x, y).

$$egin{aligned} score(oldsymbol{x},oldsymbol{y}) &= & \mathbf{w}^ op \mathbf{g}(oldsymbol{x},oldsymbol{y}) \ oldsymbol{y}^* &= & rg\max_{oldsymbol{y}\in\mathcal{Y}_{oldsymbol{x}}} \mathbf{w}^ op \mathbf{g}(oldsymbol{x},oldsymbol{y}) \end{aligned}$$

- Results:
 - decoding seeks **y** to maximize the score.
 - learning seeks w to ... do something we'll talk about later.
- Extremely general!

Generic Noisy Channel as Linear Model

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log \left(p(\boldsymbol{y}) \cdot p(\boldsymbol{x} \mid \boldsymbol{y}) \right)$$

$$= \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{y}) + \log p(\boldsymbol{x} \mid \boldsymbol{y})$$

$$= \arg \max_{\boldsymbol{y}} w_{\boldsymbol{y}} + w_{\boldsymbol{x} \mid \boldsymbol{y}}$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

 Of course, the two probability terms are typically composed of "smaller" factors; each can be understood as an exponentiated weight.

Max Ent Models as Linear Models

$$\hat{\boldsymbol{y}} = \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{y} \mid \boldsymbol{x})$$

$$= \arg \max_{\boldsymbol{y}} \log \frac{\exp \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})}{z(\boldsymbol{x})}$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) - \log z(\boldsymbol{x})$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

HMMs as Linear Models

$$\begin{aligned} \hat{\boldsymbol{y}} &= \arg \max_{\boldsymbol{y}} \log p(\boldsymbol{x}, \boldsymbol{y}) \\ &= \arg \max_{\boldsymbol{y}} \left(\sum_{i=1}^{n} \log p(x_i \mid y_i) + \log p(y_i \mid y_{i-1}) \right) + \log p(stop \mid y_n) \\ &= \arg \max_{\boldsymbol{y}} \left(\sum_{i=1}^{n} w_{y_i \downarrow x_i} + w_{y_{i-1} \to y_i} \right) + w_{y_n \to stop} \\ &= \arg \max_{\boldsymbol{y}} \sum_{y, x} w_{y \downarrow x} freq(y \downarrow x; \boldsymbol{y}, \boldsymbol{x}) + \sum_{y, y'} w_{y \to y'} freq(y \to y'; \boldsymbol{y}) \\ &= \arg \max_{\boldsymbol{y}} \sum_{y, x} w^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) \end{aligned}$$

Restrictions #1, #2

1. The score function *factors locally*.

- The more locally, the better!

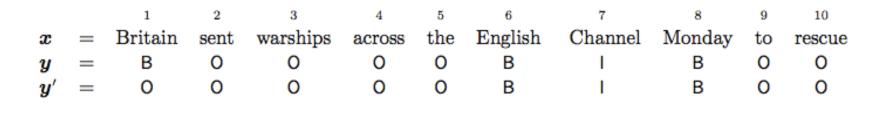
$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \log \phi_C(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

2. The local scoring functions are linear in the features.

$$score(\boldsymbol{x}, \boldsymbol{y}) = \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y})$$

$$score(\boldsymbol{x}, \boldsymbol{y}) = \sum_{C \in \mathcal{C}} \mathbf{w}^{\top} \mathbf{f}(\Pi_C(\boldsymbol{x}, \boldsymbol{y}))$$

Running Example



11	12	13	14	15	16	17	18	19	20
Britons	stranded	by	Eyjafjallajökull	\mathbf{s}	volcanic	ash	cloud		
В	0	0	В	0	0	0	0	0	0
В	0	0	В	0	0	0	0	0	0

- BIO sequence labeling, here applied to NER
- Often solved with HMMs, CRFs, M³Ns ...

Factorization

$$prediction(\mathbf{x}, \mathbf{w}) = \arg \max score(\mathbf{y}, \mathbf{w})$$
$$\mathbf{y} \in \mathcal{Y}(\mathbf{x})$$
space of feasible outputs

Assumption:

$$score(\mathbf{y}, \mathbf{w}) = \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}) = \sum_{p} \mathbf{w}^{\top} \mathbf{f}(\mathbf{y}_{p})$$

Score is a sum of local "part" scores

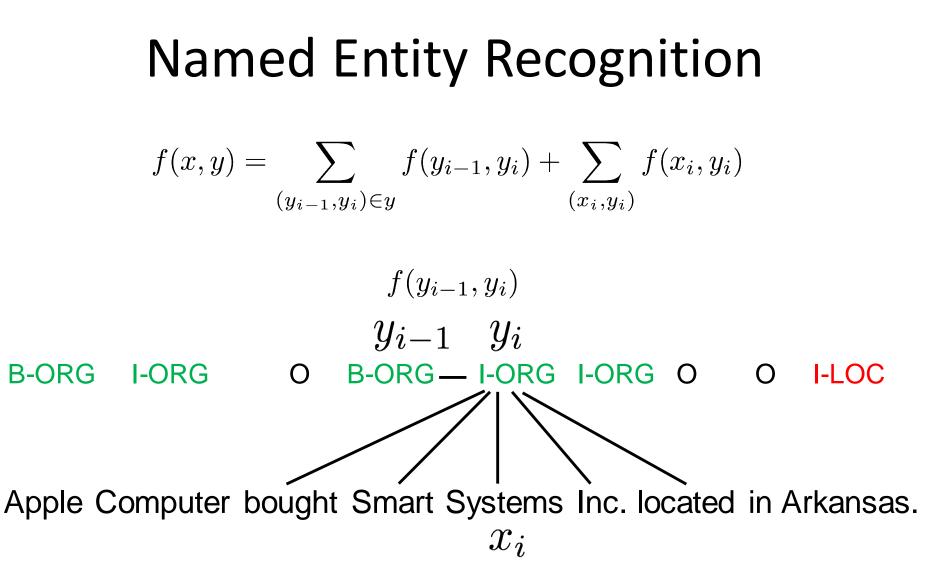
Parts = nodes and edges in a graph, rules in a tree

Named Entity Recognition

$$f(x,y) = \sum_{(y_{i-1},y_i) \in y} f(y_{i-1},y_i) + \sum_{(x_i,y_i)} f(x_i,y_i)$$

$$\begin{array}{cccc} f(y_{i-1},y_i) & & & & \\ & & & & & \\ \textbf{B-ORG I-ORG O} & \textbf{O} & \textbf{B-ORG-I-ORG O} & \textbf{O} & \textbf{I-LOC} \\ & & & & & \\ & &$$

Apple Computer bought Smart Systems Inc. located in Arkansas. x_i



(What is Not A Linear Model?)

 Probabilistic models with hidden variables, requiring general MAP inference:

$$\arg \max_{\boldsymbol{y}} p(\boldsymbol{y} \mid \boldsymbol{x}) = \arg \max_{\boldsymbol{y}} \sum_{\boldsymbol{z}} p(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})$$

- Models based on non-linear kernels $\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \sum_{i=1}^{N} \alpha_i K\left(\langle \boldsymbol{x}_i, \boldsymbol{y}_i \rangle, \langle \boldsymbol{x}, \boldsymbol{y} \rangle\right)$
- Most neural networks (those with non-linear activation functions)

Lecture Outline

- ✓ Viterbi algorithm
- \checkmark Decoding more generally
- 3. Five views

1. Probabilistic Graphical Models

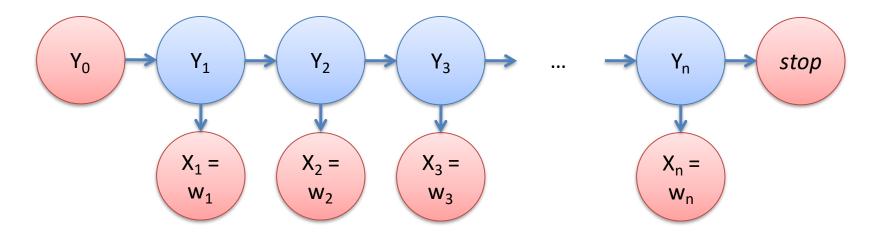
- View the linguistic structure as a collection of random variables that are interdependent.
- Represent interdependencies as a directed or undirected graphical model.
- Conditional probability tables (BNs) or factors (MNs) encode the probability distribution.
- Use standard techniques from PGMs to decode.

Inference in Graphical Models

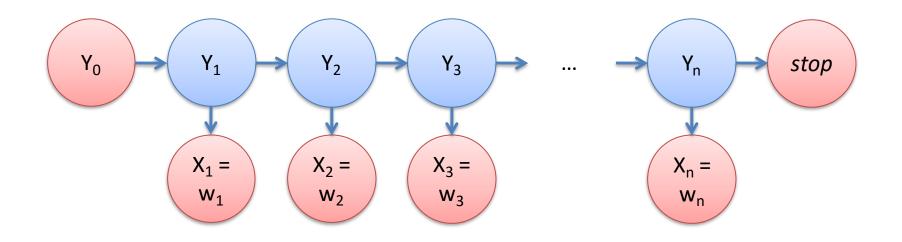
- General algorithm for exact MPE inference: variable elimination.
 - Iteratively solve for the best values of each variable conditioned on values of "preceding" neighbors.
 - Then trace back.
 - Challenge: order the r.v.s for efficiency!

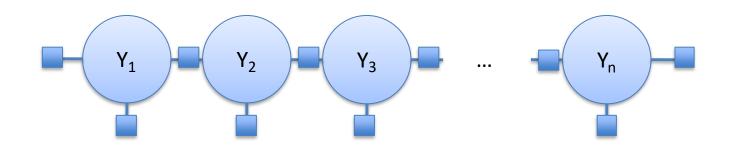
The Viterbi algorithm is an instance of max-product variable elimination!

- When we eliminate Y₁, we take a product of three relevant factors.
 - γ(Y₁ | start)
 - η(w₁ | Y₁), reduced to the observed value w₁
 - γ(Y₂ | Y₁)

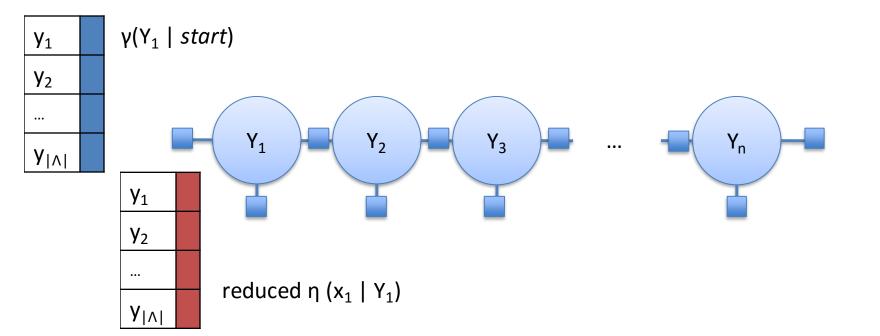


Factor Representation

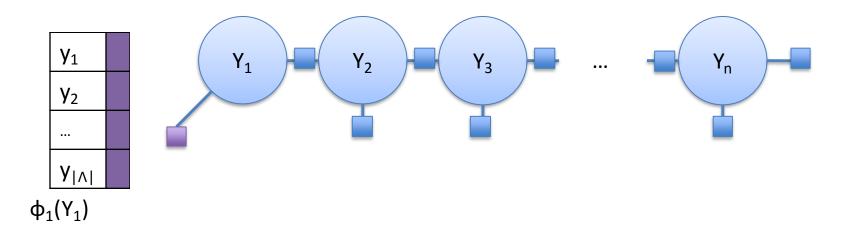




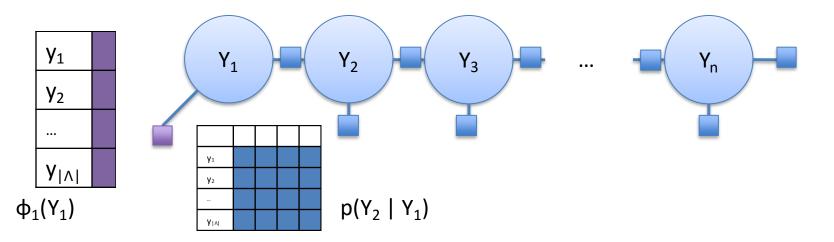
• When we eliminate Y₁, we first take a product of two factors that only involve Y₁.



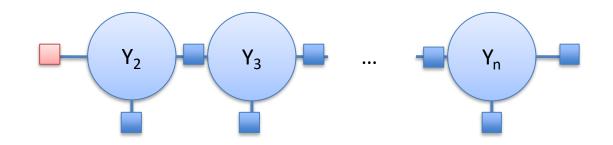
- When we eliminate Y₁, we first take a product of two factors that only involve Y₁.
- This is the Viterbi probability vector for Y_1 .



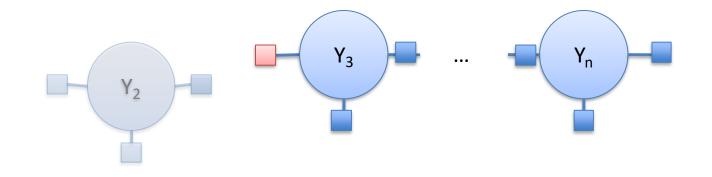
- When we eliminate Y₁, we first take a product of two factors that only involve Y₁.
- This is the Viterbi probability vector for Y₁.
- Eliminating Y_1 equates to solving the Viterbi probabilities for Y_2 .



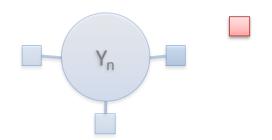
- Product of all factors involving Y₁, then reduce.
 - $\phi_2(Y_2) = \max_{y \in Val(Y_1)} (\phi_1(y) \times p(Y_2 | y))$
 - This factor holds Viterbi probabilities for Y₂.



- When we eliminate Y₂, we take a product of the analogous two relevant factors.
- Then reduce.
 - $\phi_3(Y_3) = \max_{y \in Val(Y_2)} (\phi_2(y) \times p(Y_3 | y))$



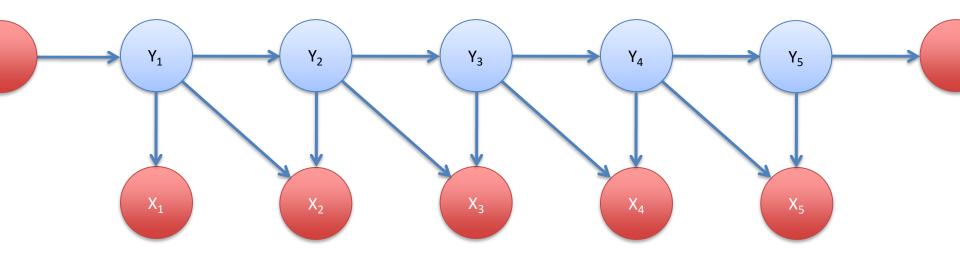
- At the end, we have one final factor with one row, ϕ_{n+1} .
- This is the score of the best sequence.
- Use backtrace to recover values.



Why Think This Way?

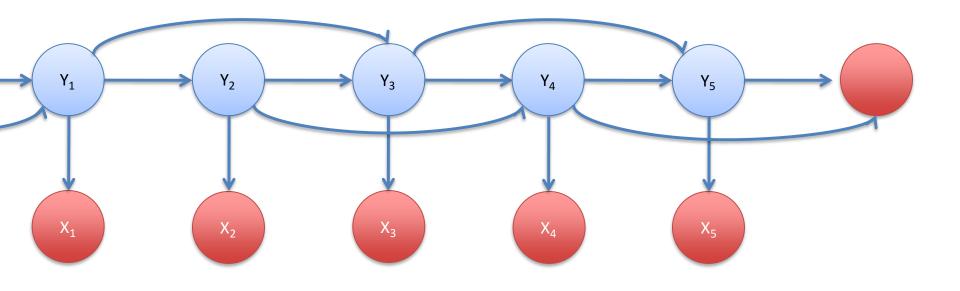
- Easy to see how to generalize HMMs.
 - More evidence
 - More factors
 - More hidden structure
 - More dependencies
- Probabilistic interpretation of factors is *not* central to finding the "best" Y ...
 - Many factors are not conditional probability tables.

Generalization Example 1



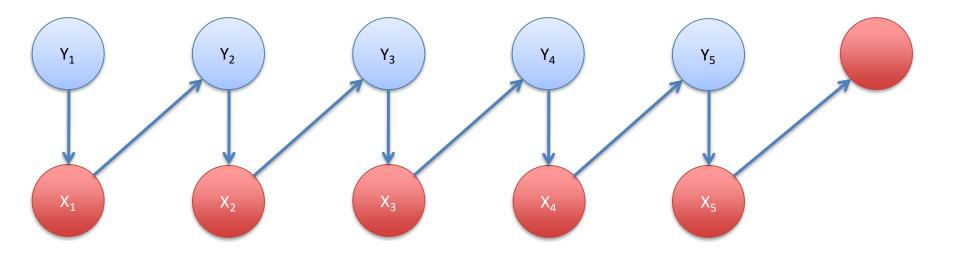
• Each word also depends on previous state.

Generalization Example 2



• "Trigram" HMM

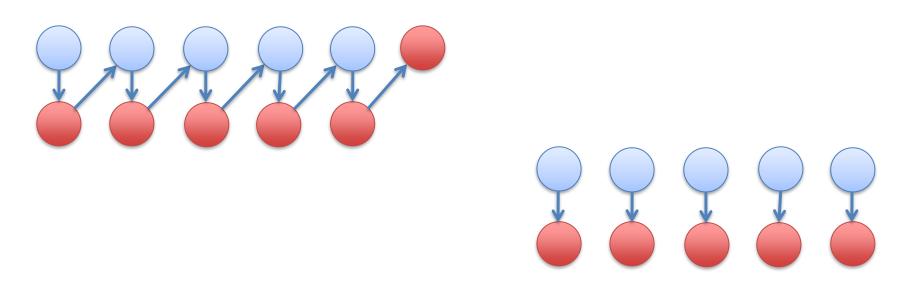
Generalization Example 3



 Aggregate bigram model (Saul and Pereira, 1997)

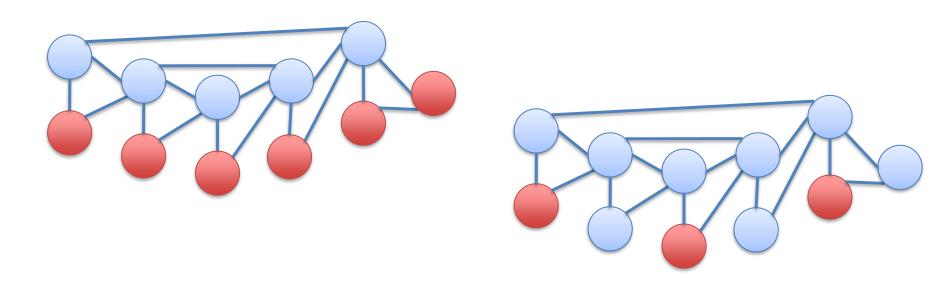
Inference in Graphical Models

- Remember: more edges make inference more expensive.
 - Fewer edges means stronger independence.
- Really pleasant:



Inference in Graphical Models

- Remember: more edges make inference more expensive.
 - Fewer edges means stronger independence.
- Really unpleasant:



Lecture Outline

- ✓ Viterbi algorithm
- ✓ Decoding more generally
- 3. Five views
 - ✓ MPE/MAP inference in a graphical model

2. Polytopes

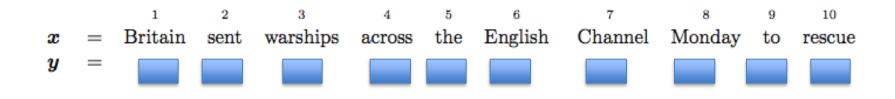
"Parts"

 Assume that feature function g breaks down into local parts.

$$\mathbf{g}(oldsymbol{x},oldsymbol{y}) \;\;=\;\; \sum_{i=1}^{\# parts(oldsymbol{x})} \mathbf{f}(\Pi_i(oldsymbol{x},oldsymbol{y}))$$

- Each part has an alphabet of possible values.
 - Decoding is choosing values for all parts, with consistency constraints.
 - (In the graphical models view, a part is a clique.)

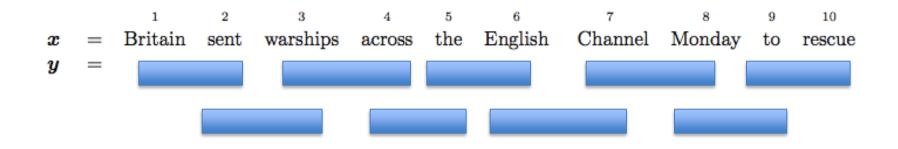
Example



- One part per word, each is in {B, I, O}
- No features look at multiple parts

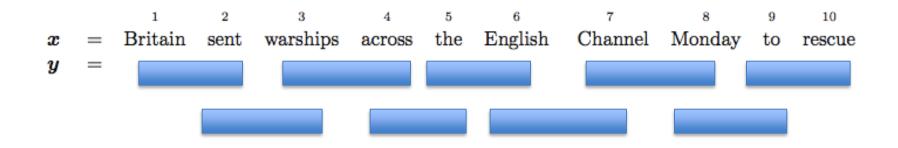
 Fast inference
 - Not very expressive

Example



- One part per bigram, each is in {BB, BI, BO, IB, II, IO, OB, OO}
- Features and constraints can look at pairs
 - Slower inference
 - A bit more expressive

Geometric View



- Let z_{i,π} be 1 if part *i* takes value π and 0 otherwise.
- **z** is a vector in {0, 1}^N
 - -N = total number of localized part values
 - Each z is a vertex of the unit cube

Score is Linear in z

$$\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \mathbf{f}(\Pi_{i}(\boldsymbol{x}, \boldsymbol{y}))$$

$$= \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \text{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) \mathbf{1}\{\Pi_{i}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{\pi}\}$$
not really
equal; need
to transform
back to get \mathbf{y}

$$= \arg \max_{\mathbf{z} \in \mathcal{Z}_{\mathbf{x}}} \mathbf{w}^{\top} \sum_{i=1}^{\#parts(\boldsymbol{x})} \sum_{\boldsymbol{\pi} \in \text{Values}(\Pi_{i})} \mathbf{f}(\boldsymbol{\pi}) z_{i,\boldsymbol{\pi}}$$

$$= \arg \max_{\mathbf{z} \in \mathcal{Z}_{\mathbf{x}}} \mathbf{w}^{\top} \mathbf{F}_{\mathbf{x}} \mathbf{z}$$

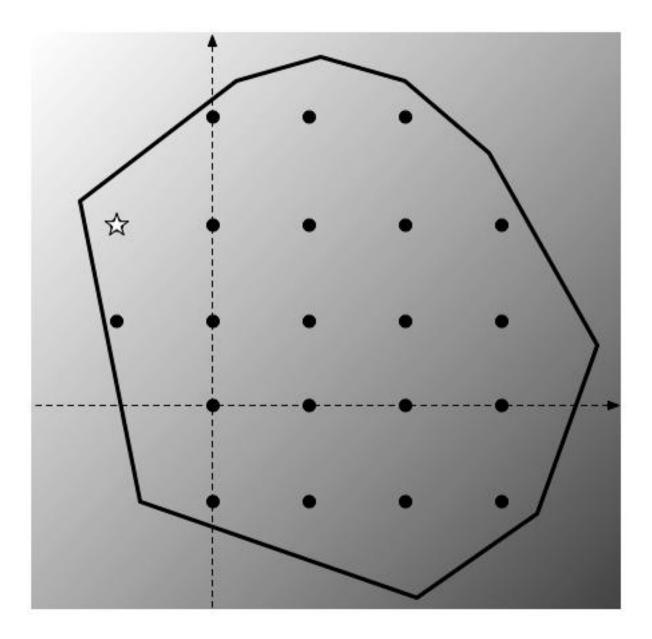
$$= \arg \max_{\mathbf{z} \in \mathcal{Z}_{\mathbf{x}}} (\mathbf{w}^{\top} \mathbf{F}_{\mathbf{x}}) \mathbf{z}$$

Polyhedra

• Not all vertices of the *N*-dimensional unit cube satisfy the constraints.

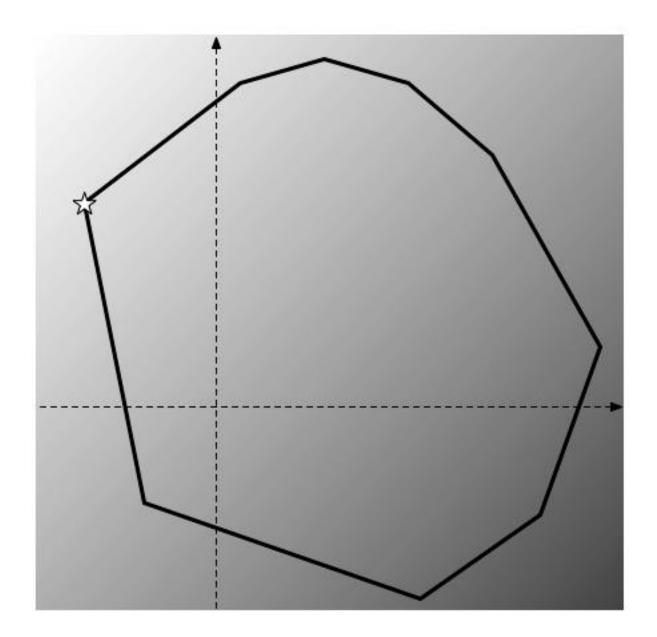
- E.g., can't have $z_{1,BI} = 1$ and $z_{2,BI} = 1$

- Sometimes we can write down a small (polynomial number) of linear constraints on z.
- Result: linear objective, linear constraints, integer constraints ...



Integer Linear Programming

- Very easy to add new constraints and non-local features.
- Many decoding problems have been mapped to ILP (sequence labeling, parsing, ...), but it's *not* always trivial.
- NP-hard in general.
 - But there are packages that often work well in practice (e.g., CPLEX)
 - Specialized algorithms in some cases
 - LP relaxation for approximate solutions



Remark

- Graphical models assumed a probabilistic interpretation
 - Though they are not always learned using a probabilistic interpretation!
- The polytope view is agnostic about how you interpret the weights.

– It only says that the decoding problem is an ILP.

3. Weighted Parsing

Grammars

- Grammars are often associated with natural language parsing, but they are extremely powerful for imposing constraints.
- We can add weights to them.
 - HMMs are a kind of weighted regular grammar (closely connected to WFSAs)
 - PCFGs are a kind of weighted CFG
 - Many, many more.
- Weighted parsing: find the maximum-weighted derivation for a string **x**.

Decoding as Weighted Parsing

- Every valid y is a grammatical derivation (parse) for x.
 - HMM: sequence of "grammatical" states is one allowed by the transition table.
- Augment parsing algorithms with weights and find the best parse.

The Viterbi algorithm is an instance of recognition by a weighted grammar!

BIO Tagging as a CFG

 Weighted (or probabilistic) CKY is a dynamic programming algorithm very similar in structure to classical CKY.

4. Paths and Hyperpaths

Best Path

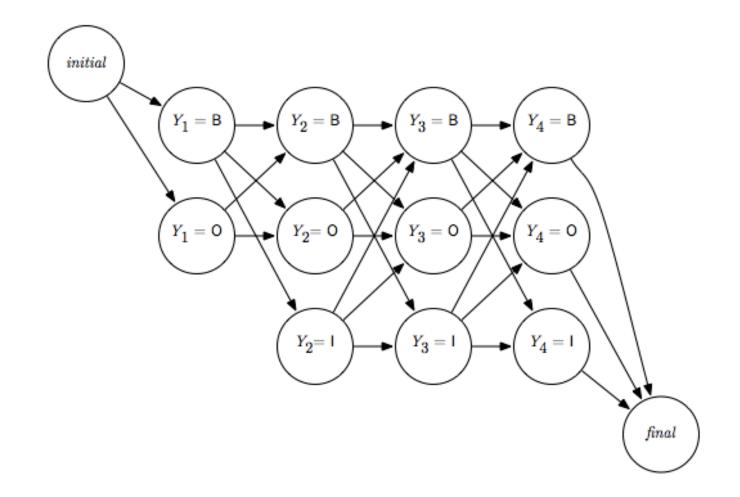
- General idea: take **x** and build a graph.
- Score of a path factors into the edges.

 $\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{e \in \text{Edges}} \mathbf{f}(e) \mathbf{1} \{ e \text{ is crossed by } \boldsymbol{y} \text{'s path} \}$

• Decoding is finding the *best* path.

The Viterbi algorithm is an instance of finding a best path!

"Lattice" View of Viterbi



A Generic Best Path Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}$, start vertex v_0
- Output: d : V $\rightarrow \mathbb{R}$ (shortest path function) and back pointers b : V \rightarrow V

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
while d has not converged:
pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
```

Ordering Updates

- Naïve ways of choosing edges will lead to cyclic updating and gross inefficiency!
- Before considering various ways of doing it, let's consider how the Viterbi algorithm is essentially solving the same problem.

Viterbi Algorithm (In the Style of A Best Path Algorithm)

• Input:

- − directed graph G = (V, E) where each vertex v = (q, t), q ∈ Q ∪ $\{\emptyset\}$, t ∈ {-1, 0, 1, ..., n} and each edge (u, v) = ((q, t), (q', t + 1))
- $\begin{array}{l} & \mbox{cost}: E \rightarrow \mathbb{R}, \mbox{defined by} \\ & \mbox{cost}((q, t), (q', t+1)) = -\log \gamma(q' \mid q) \log \eta(s_{t+1} \mid q) \log (1 \xi(q)) \\ & \mbox{cost}((q, n 1), (q', n)) = -\log \gamma(q' \mid q) \log \eta(s_{t+1} \mid q) \log \xi(q') \\ & \mbox{cost}((\emptyset, -1), (q, 0)) = -\log \pi(q) \end{array}$
- fixed start vertex $v_0 = (\emptyset, -1)$
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
perform a topological sort on V
while d has not converged: for each v in top-sort order:
pick an arbitrary edge (u, v)
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
// d(v) and b(v) are now known
```

The Viterbi Trick

- From a "best path" perspective, Viterbi is:
 - defining the vertices and edges to have special structure (state/time step)
 - assigning costs based on HMM weights and the specific input string $s_1 \dots s_n$
 - ordering the edges cleverly to make things efficient
- Note also: Viterbi's graph has no cycles.

Another Variant: "Forward" Updating

After topological sort, can also choose all edges going *out* of current node.

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
perform a topological sort on V
for each u in top-sort order:
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
```

Memoized Recursion

- Input: directed graph G = (V, E), cost : E $\rightarrow \mathbb{R}$, start vertex v₀, target vertex v_t
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

```
for all v \in V \setminus \{v_0\}, d(v) := \emptyset and b(v) := \emptyset
set d(v_0) = 0
memoize(v_{t})
memoize(v):
    // guaranteed to return best-cost path score for v
    if d(v) = \emptyset:
      d(v) := ∞
     for each (u, v) \in E:
            if memoize(u) + cost(u, v) < d(v):
                  d(v) := d(u) + cost(u, v)
                  b(v) := u
    return d(v)
```

A Generic Best Path Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}$, start vertex v_0
- Output: d : V $\rightarrow \mathbb{R}$ (shortest path function) and back pointers b : V \rightarrow V

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
while d has not converged:
pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
```

Dijkstra's Algorithm

- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}_{\geq 0}$ (important!), start vertex v_0
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
Q := priority queue on V ordered by d (lower cost = higher priority)
while d has not converged: while Q is not empty:
pick an arbitrary edge (u, v)
u := extract-min(Q)
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
update v's priority in Q
```

A* Algorithm

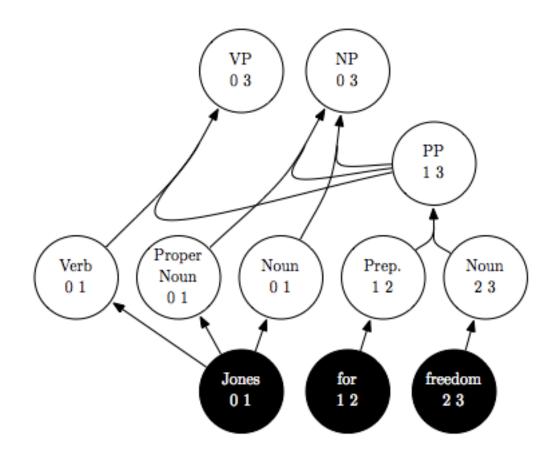
- Input: directed graph G = (V, E), cost : $E \rightarrow \mathbb{R}_{\geq 0}$, start vertex v₀, target vertex v_t, heuristic h : V $\rightarrow \mathbb{R}_{\geq 0}$ such that h(v) \leq best-cost(v, v_t)
- Output: $d: V \rightarrow \mathbb{R}$ (shortest path function) and back pointers $b: V \rightarrow V$

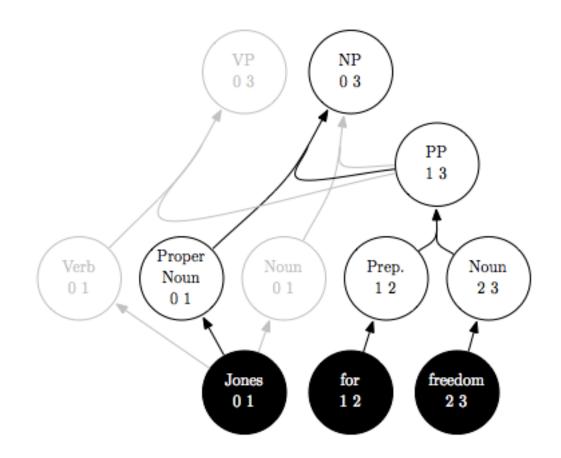
```
for all v \in V \setminus \{v_0\}, d(v) := \infty and b(v) := \emptyset
set d(v_0) = 0
Q := priority queue on V ordered by d + h (lower cost = higher priority)
while Q is not empty:
u := extract-min(Q)
for each (u, v) \in E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) := u
update v's priority in Q
```

Minimum Cost Hyperpath

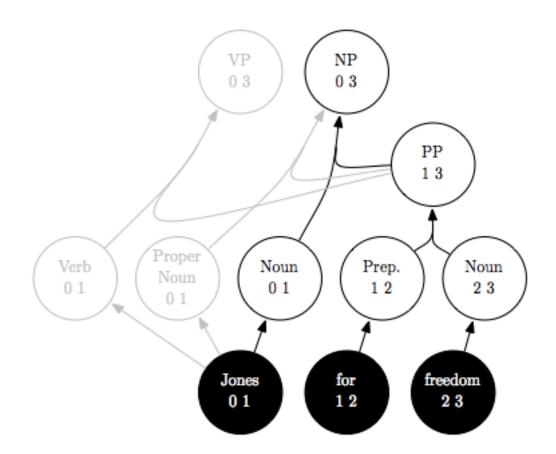
- General idea: take **x** and build a hypergraph.
- Score of a hyperpath factors into the hyperedges.
- Decoding is finding the best *hyperpath*.

• This connection was elucidated by Klein and Manning (2002).

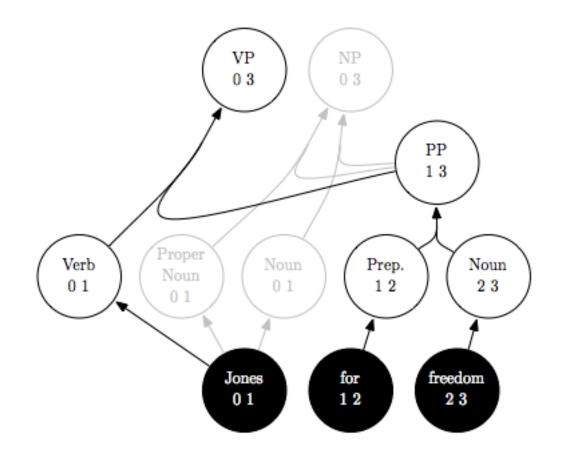




cf. "Dean for democracy"



Forced to work on his thesis, sunshine streaming in the window, Mike experienced a ...



Forced to work on his thesis, sunshine streaming in the window, Mike began to ...

Why Hypergraphs?

- Useful, compact encoding of the hypothesis space.
 - Build hypothesis space using local features, maybe do some filtering.
 - Pass it off to another module for more finegrained scoring with richer or more expensive features.

5. Weighted Logic Programming

Logic Programming

• Start with a set of axioms and a set of inference rules.

$$\begin{array}{lll} \forall A, C, & \quad \operatorname{ancestor}(A, C) & \Leftarrow & \operatorname{parent}(A, C) \\ \forall A, C, & \quad \operatorname{ancestor}(A, C) & \Leftarrow & \bigvee_B \operatorname{ancestor}(A, B) \wedge \operatorname{parent}(B, C) \end{array}$$

- The goal is to prove a specific theorem, goal.
- Many approaches, but we assume a *deductive* approach.
 - Start with axioms, iteratively produce more theorems.

$$\begin{array}{lll} \forall \ell \in \Lambda, & \mathsf{v}(\ell, 1) &= & \mathsf{labeled-word}(x_1, \ell) \\ \forall \ell \in \Lambda, & \mathsf{v}(\ell, i) &= & \bigvee_{\ell' \in \Lambda} \mathsf{v}(\ell', i - 1) \wedge \mathsf{label-bigram}(\ell', \ell) \wedge \mathsf{labeled-word}(x_i, \ell) \\ & \mathsf{goal} &= & \bigvee_{\ell \in \Lambda} \mathsf{v}(\ell, n) \end{array}$$

Weighted Logic Programming

- Twist: axioms have weights.
- Want the proof of goal with the best score:

$$\arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \mathbf{g}(\boldsymbol{x}, \boldsymbol{y}) = \arg \max_{\boldsymbol{y}} \mathbf{w}^{\top} \sum_{a \in \text{Axioms}} \mathbf{f}(a) freq(a; \boldsymbol{y})$$

 Note that axioms can be used more than once in a proof (y).

Whence WLP?

- Shieber, Schabes, and Pereira (1995): many parsing algorithms can be understood in the same deductive logic framework.
- Goodman (1999): add weights in a semiring, get many useful NLP algorithms.
- Eisner, Goldlust, and Smith (2004, 2005): semiring-generic algorithms, Dyna.

Dynamic Programming

- Most views (exception is polytopes) can be understood as DP algorithms.
 - The low-level *procedures* we use are often DP.
 - Even DP is too high-level to know the best way to implement.
- Break a problem into slightly smaller problems with **optimal substructure**.
 - Best path to v depends on best paths to all u such that $(u,v) \in E$.
- Overlapping subproblems: each subproblem gets used repeatedly, and there aren't too many of them.

Dynamic Programming

- Three main strategies for DP:
 - Viterbi, Levenshtein edit distance, CKY: predefined, "clever" ordering.
 - Memoization
 - Agenda (Dijkstra' s algorithm, A*)
- Things to remember in general:
 - The hypergraph may too big to represent explicitly; exhaustive calculation may be too expensive.
 - The hypergraph may or may not have properties that make "clever" orderings possible.
 - DP does not imply polynomial time and space! Most common approximations when the desired state space is too big: beam search, cube pruning, agendas with early stopping, ...

Summary

- Decoding is the general problem of choosing a complex structure.
 - Linguistic analysis, machine translation, speech recognition, ...
 - Statistical models are usually involved (not necessarily probabilistic).
- No perfect general view, but much can be gained through a combination of views.
- First question: can I solve it exactly with DP?