Approaches to Inference

inference

approximate

variable

L randomized deterministic
elimination

randomized I loopy belief LP
variational . : local search
search propagation relaxations

simulated

dynamic
programs

importance
sampling

mean field beam search

annealing

red = hard inference
blue = soft inference
purple = both

Hidden Markov Model

e XandY are both sequences of symbols

— Xis a sequence from the vocabulary 2
— Y is a sequence from the state space A

p(Y:S,X:’UJ): n+1

p(Sta’rt7 §1,W1,82,W2,...,Sn, ’UJnStOp) — H 77(101 | S’L) X /Y(S’L ‘ 8i—1>
1=1

e Parameters:

— Transitions y including y(stop | s), v(s |)
— Emissions n

Hidden Markov Model

* The joint model’ s independence assumptions
are easy to capture with a Bayesian network.

p(Y =5, X =w) = -

p(start, s1, w1, S2, wa, . . ., Sn, Wy Stop) H n(w; | si) X v(s; | 8i-1)

OV Ve
WO ¢

Hidden Markov Model

* The MPE/MAP inference problem is to find
the most probable value of Y given X = x.

p(Y =5, X =w) = -

p(start, s1, w1, S2, wa, . . ., Sn, Wy Stop) H n(w; | si) X v(s; | 8i-1)

Hidden Markov Model

* The MPE/MAP inference problem is to find
the most probable value of Y given X = x.

e Markov network:

Markov Network

* Adifferentgraphical model representation; undirected.
Vertices are still r.v.s.

* Everyclique Cin the graph gets a localscoring function
¢ that maps assignments to values.

mulscore(x,y) H ool (x,y))
cecC

addscore(x,y) Z log pc(llc(x,y))
c'eC

* This score can be globally renormalized to obtaina
probabilistic interpretation. (Not today.)

Restriction #1

1. The score function factors locally.

— The more locally, the better!

score(x,y) Z log ¢c (Il (x, y))
CceC

Linear Models

Define a feature vector function g that maps (x, y) pairs
into d-dimensional real space.

Score is linearin g(x, y).

score(x,y) = w' g(z,y)

*

y arg max w ' g(x,y)

YEVe

Results:
— decoding seeks y to maximize the score.
— learning seeks w to ... do something we’ Il talk about later.

Extremely general

Generic Noisy Channel as Linear Model

y = argmaxlog (p(y) -p(x|y))

= argmaxlogp(y) +logp(z |)

= argmax Wy + Wy|y
Y

= argmaxw g(x,y)
Y

* Of course, the two probability terms are
typically composed of “smaller” factors; each
canh be understood as an exponentiated

weight.

Max Ent Models as Linear Models

y = argmaxlogp(y | x)
Y

B expw ' g(z, y)
= arg maxlog

= argmaxw gz, y) — log z(x)
Y

)
— argmaxw ' g(x,y)
Y

HMMs as Linear Models

arg max log p(x, y)
Y

arg max (Z log p(; | yi) +log p(y; | yi1)> +log p(stop | yn)
1=1

n
arg m??x (E :wyilfﬂi + wyi1—>yi> + Wy,, —stop
1=1

argmax » wy|afreqly | 7;y,) + Y wy—y frealy > y'sy)
Y, Y.y’

argmax w ' g(x,y)
Y

Restrictions #1,

2

1. The score function factors locally.

— The more locally, the better!

score(x,y) Z log ¢c (Il (x, y))

ceC

2. The local scoring functions are linear in the

features.

score(z,y) = w' g(x,y)

score(x,y) = Z w ' f(Ilc(xz, y))

ceC

Running Example

1 2 3 4 o 1] T o] 4 1

x = DBritain sent warships across the English Channel Monday to rescue
Yy = B 0 0 0 O B I B O 0
y = O 0 O O O B I B O 0
11 1 13 14 14 16 17 1= 14 20
Britons stranded by Eyjafjallajokull ‘s wvolcanic ash cloud
B O 0 B O 0 O 0 O O
B O O B O 0 O 0 O O

* BIO sequence labeling, here applied to NER
e Often solved with HMMs, CRFs, M3Ns ...

Factorization

prediction(x,w) = arg max score(y, w)
yeY(x)

space of feasible outputs

Assumption:

score(y,w) = w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes and edges in a graph, rules in a tree

Named Entity Recognition

flay) = Y, fwny)+ Y flw,)

(Yi—1,Yi)€Y (x:,y:)

f(y’i—lay’i)
Yi—1 Y;
B-ORG [-ORG O B-ORG— I-ORG I-ORG O O I-LOC
f(xiay’i)

Apple Computer bought Smart Systems Inc. located in Arkansas.
L

Named Entity Recognition

flay) = Y, fwny)+ Y flw,)

(Yi—1,Y:)€Y (ri,y:)
f(y’i—la y’b)
Yi—1 Yi
B-ORG I|-ORG B-ORG— I-ORG |-ORG O -LOC

TN

Apple Computer bought Smart Systems Inc. located in Arkansas.

(What is Not A Linear Model?)

Probabilistic models with hidden variables,
requiring general MAP inference:

argmax p(y | x) = argmax » p(y, z | =)
Y Y ~

Models based on non-linear kernels

argmawag(a:y = argmaXZOéz (i), (T, Y))
Yy

Most neural networks (those with non-linear
activation functions)

Lecture Outline

v'Viterbi algorithm
v’ Decoding more generally

3. Five views

1. Probabilistic Graphical Models

View the linguistic structure as a collection of
random variables that are interdependent.

Represent interdependencies as a directed or
undirected graphical model.

Conditional probability tables (BNs) or factors
(MNs) encode the probability distribution.

Use standard techniques from PGMs to
decode.

Inference in Graphical Models

e General algorithm for exact MPE inference:
variable elimination.

— |teratively solve for the best values of each

variable conditioned on values of “preceding”
neighbors.

— Then trace back.

— Challenge: order the r.v.s for efficiency!

The Viterbi algorithm is an instance of
max-product variable elimination!

Hidden Markov Model

* When we eliminate Y,, we take a product of
three relevant factors.

* v(Y, | start)
* n(w; | Y,), reduced to the observed value w,

* v(Y, | Yq)

Factor Representation

-

Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y.

Y1 v(Y, | start)
\%)

£ IR

Y1 - - -
Y2

reduced n (x; | Yq)
Yinl

Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y.

* This is the Viterbi probability vector for Y,.

yl G-Q-G- -
Y2

Yinl
¢4 (Y1)

Hidden Markov Model

* When we eliminate Y,, we first take a product
of two factors that only involve Y.

* This is the Viterbi probability vector for Y,.

* Eliminating Y, equates to solving the Viterbi
probabilities for Y,.

m 4

p(Yz | Yy)

Yinl
¢4 (Y1)

Hidden Markov Model

* Product of all factors involving Y,, then
reduce.

* O,(Y,) = MaX, eval(y,) (d,(y) X p(Y, | y))
* This factor holds Viterbi probabilities for Y,.

. ?-9- Q@»ﬂ

Hidden Markov Model

* When we eliminate Y,, we take a product of
the analogous two relevant factors.

 Then reduce.
* B5(Y3) = max ey, (Pa(y) X p(Ys | y))

Hidden Markov Model

* At the end, we have one final factor with one
row, @, .

* This is the score of the best sequence.
e Use backtrace to recover values.

Why Think This Way?

* Easy to see how to generalize HMMs.
— More evidence
— More factors
— More hidden structure
— More dependencies
* Probabilistic interpretation of factors is not
central to finding the “best” Y ...

— Many factors are not conditional probability
tables.

Generalization Example 1

ANV

X3 X4 Xs

* Each word also depends on previous state.

Generalization Example 2

—0——9—9—0
b 6 6 & d

e “Trigram”~ HMM

Generalization Example 3

* Aggregate bigram model (Saul and Pereira,
1997)

Inference in Graphical Models

* Remember: more edges make inference more
expensive.

— Fewer edges means stronger independence.

* Really pleasant:

11(E
9/2/ $8ddi

Inference in Graphical Models

* Remember: more edges make inference more
expensive.

— Fewer edges means stronger independence.

* Really unpleasant:

T s

Lecture Outline

v'Viterbi algorithm
v’ Decoding more generally

3. Five views
v' MPE/MAP inference in a graphical model

2. Polytopes

“Parts”

* Assume that feature function g breaks down
into local parts.

#parts(x)

glxz,y) = > f(l(z,y))

1=1

e Each part has an alphabet of possible values.

— Decoding is choosing values for all parts, with
consistency constraints.

— (In the graphical models view, a part is a clique.)

Example

1 2 3 4 & Li T H 4 14
Britain sent warships across the English Channel Monday to rescue

T i - - .-

* One part per word, eachisin {B, |, O}
* No features look at multiple parts

— Fast inference
— Not very expressive

Example

1 2 3 4 & Li T H 4 10
Britain sent warships across the English Channel Monday to rescue

* One part per bigram, each is in {BB, Bl, BO, IB,
11, 10, OB, OO}
* Features and constraints can look at pairs

— Slower inference
— A bit more expressive

Geometric View

1 2 3 4 & Li T H 4 10
Britain sent warships across the English Channel Monday to rescue

* Let z;, belif part/takes value mand O
otherwise.

e zisavectorin {0, 1}V
— N = total number of localized part values
— Each zis a vertex of the unit cube

Score is Linearin z

#parts(x)
argmaxw ' g(x,y) = argmaxw' Z f(IL;(x,y))
Y Y i=1
#parts(x)
= argmaxw ' Z > f(m{IL(z,y) = 7}
Y = 7€ Values(I1;)
not really 4 parts(z)
equal; need _ £ '
to transform are irel%X w' Z GVIE:) ()2,
1 =1 7T alues

back to get y

= argmaxw F.z
ZCEZ,

_ T
= arg grelgx (Fm) z

Polyhedra

-

Not all vertices of the N-dimensional unit cube
satisfy the constraints.

—E.g., can' thavez, gz =1and z,5 =1

Sometimes we can write down a small
(polynomial number) of linear constraints on
Z.

Result: linear objective, linear constraints,
Integer constraints ...

SEU D
S
e e

Integer Linear Programming

* Very easy to add new constraints and non-local
features.

 Many decoding problems have been mapped to

ILP (sequence labeling, parsing, ...), butit’ s not
always trivial.

* NP-hardin general.

— But there are packages that often work well in
practice (e.g., CPLEX)

— Specialized algorithms in some cases
— LP relaxation for approximate solutions

s~ s s o+
————————————

Remark

* Graphical models assumed a probabilistic
Interpretation

— Though they are not always learned using a
probabilistic interpretation!

* The polytope view is agnostic about how you
interpret the weights.

— It only says that the decoding problem is an ILP.

3. Weighted Parsing

Grammars

 Grammars are often associated with natural
language parsing, but they are extremely
powerful for imposing constraints.

* We can add weights to them.

— HMMs are a kind of weighted regular grammar
(closely connected to WFSAs)

— PCFGs are a kind of weighted CFG
— Many, many more.

* Weighted parsing: find the maximum-weighted
derivation for a string x.

Decoding as Weighted Parsing

* Every valid y is a grammatical derivation
(parse) for x.

— HMM: sequence of “grammatical” states is one
allowed by the transition table.

* Augment parsing algorithms with weights and
find the best parse.

The Viterbi algorithm is an instance of
recognition by a weighted grammar!

BIO Tagging as a CFG

Ny — B Rp Ry — B Rp R; — B Rp Ro — B Rg
N* — 0 RQ RB — 0 RO Rir — 0 RC} RO — O RD
R — I R; Ry — I R,

Ry — € R, — € Ro — €
Vo € 2, B — =z I — =z O — =z

* Weighted (or probabilistic) CKY is a dynamic
programming algorithm very similar in
structure to classical CKY.

4. Paths and Hyperpaths

Best Path

* General idea: take x and build a graph.
e Score of a path factors into the edges.

argmaxw ' g(x,y) = argmaxw ' g f(e)1{e is crossed by y’s path}
Yy Yy
ecEdges

* Decoding is finding the best path.

The Viterbi algorithm is an instance of
finding a best path!

“Lattice” View of Viterbi

A Generic Best Path Algorithm

* |Input: directed graph G =(V, E), cost: E & R, start vertex v,

e OQOutput: d:V = R (shortest path function) and back pointers
b:V>V

forallv eV \{vy}, d(v) :=eoand b(v) =0
setd(vy) =0
while d has not converged:
pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) :=d(u) + cost(u, v)
b(v) :=u

Ordering Updates

* Naive ways of choosing edges will lead to
cyclic updating and gross inefficiency!
* Before considering various ways of doing it,

let's consider how the Viterbi algorithm is
essentially solving the same problem.

Viterbi Algorithm
(In the Style of A Best Path Algorithm)

* I|nput:

— directed graph G = (V, E) where
each vertexv=(qg,t),geQuU{0},te{-1,0,1, .., n}
and each edge (u, v) = ((q, t), (', t + 1))

— cost: E—> R, defined by

cost((g, t), (9', t+1)) =—logv(a' |) —log n(sw.; | a)—log (1 -¢&(q))
cost((q, n-1),(q", n)) =—logv(qa' | q) —log n(sw1 | 9)—log&(qa')
cost((@, -1), (g, 0)) =—log mt(q)

— fixed start vertex v, = (0, -1)

e OQutput: d:V = R (shortest path function) and back pointersb : V>V

forallv eV \ {vy},d(v) :=ecand b(v) := 0
setd(vg)=0
perform a topological sorton V

white-d-hasret-converged: for each v in top-sort order:
piekararbitraryedee oy}

for each (u, v) € E:
if d(u) + cost(u, v) < d(v):
d(v) :=d(u) + cost(u, v)
b(v) :=u
// d(v) and b(v) are now known

The Viterbi Trick

* From a “best path” perspective, Viterbi is:

— defining the vertices and edges to have special
structure (state/time step)

— assigning costs based on HMM weights and the
specific input string s; ... s,

— ordering the edges cleverly to make things
efficient

* Note also: Viterbi's graph has no cycles.

Another Variant:
“Forward” Updating

* After topological sort, can also choose all edges going out
of current node.

forallv eV \{vy}, d(v) :=eoand b(v) =0
setd(vy) =0
perform a topological sort on V
for each u in top-sort order:
for each (u, v) € E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) :=u

Memoized Recursion

* Input: directed graph G =(V, E), cost: E & R, start vertex v, target vertex v,
 Qutput: d:V = R (shortest path function) and back pointersb:V >V

forallv €V \ {v}, d(v) := @ and b(v) := @
set d(vy) =0
memoize(v,)

memoize(v):
// guaranteed to return best-cost path score forv
if d(v) = 0:
d(v) := oo
for each (u, v) € E:
if memoize(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) :=u
return d(v)

A Generic Best Path Algorithm

* |Input: directed graph G =(V, E), cost: E & R, start vertex v,

e OQOutput: d:V = R (shortest path function) and back pointers
b:V>V

forallv eV \{vy}, d(v) :=eoand b(v) =0
setd(vy) =0
while d has not converged:
pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) :=d(u) + cost(u, v)
b(v) :=u

Dijkstra's Algorithm

* Input: directed graph G =(V, E), cost: E - R, (important!), start vertex v,
 Qutput: d:V = R (shortest path function) and back pointersb:V >V

forall v eV \{vy}, d(v) ;= andb(v) =0
setd(vy) =0
Q := priority queue on V ordered by d (lower cost = higher priority)
while-d-hasneteonverged: while Q is not empty:
el o el)
u :=extract-min(Q)
foreach (u, v) E E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) :=u
update v's priority in Q

A* Algorithm

* Input: directed graph G =(V, E), cost : E > R, start vertex v, target
vertexv,, heuristich : V 2 R, such that h(v) < best-cost(v, v,)

 Qutput: d:V = R (shortest path function) and back pointersb:V >V

forallve V\{vy}, d(v) :=ccandb(v) =0
setd(vy)=0
Q := priority queue on V ordered by d + h (lower cost = higher priority)
while Q is not empty:
u :=extract-min(Q)
foreach (u, v) E E:
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v)
b(v) :=u
update v's priority in Q

Minimum Cost Hyperpath

General idea: take x and build a hypergraph.

Score of a hyperpath factors into the
hyperedges.

Decoding is finding the best hyperpath.

This connection was elucidated by Klein and
Manning (2002).

Parsing as a Hypergraph

Parsing as a Hypergraph

01 23
cf. “Dean for democracy”

Parsing as a Hypergraph

Forced to work on his thesis, sunshine streaming in the window,
Mike experienced a ...

Parsing as a Hypergraph

Forced to work on his thesis, sunshine streaming in the window,
Mike began to ...

Why Hypergraphs?

e Useful, compact encoding of the hypothesis
space.

— Build hypothesis space using local features, maybe
do some filtering.

— Pass it off to another module for more fine-
grained scoring with richer or more expensive
features.

5. Weighted Logic Programming

Logic Programming

e Start with a set of axioms and a set of inference
rules.

VA, C, ancestor(A,C') <« parent(A, C)
VA, C, ancestor(A,C) <« \/ ancestor(A, B) A parent(B, C)
B

 The goal is to prove a specific theorem, goal.

 Many approaches, but we assume a deductive
approach.

— Start with axioms, iteratively produce more theorems.

label-bigram(“B”, “B")
label-bigram(“B”, “I”)
label-bigram(“B”, “O")
label-bigram(“I”, “B")
label-bigram(“I” , “I7)
label-bigram(“I”, “O")
label-bigram(“0”, “B")
label-bigram(“0”, “0”)
Yz e X, labeled-word(z, “B”)
Yz e X, labeled-word(x, “I")
Yz e X, labeled-word(z, “O")

Vee A, v(£,1) = labeled-word(z,,)
Vee A, v(£i) = \/ v(£,i—1)Alabel-bigram(£', £) A labeled-word(z;, £)
£eA

goal = Vv{f,n]

fEA

Weighted Logic Programming

 Twist: axioms have weights.
 Want the proof of goal with the best score:
argmaxw ' g(x,y) = argmaxw' Z f(a)freq(a;y)
Yy

Yy
aEAxioms

* Note that axioms can be used more than once
in a proof (y).

Whence WLP?

* Shieber, Schabes, and Pereira (1995): many
parsing algorithms can be understood in the
same deductive logic framework.

e Goodman (1999): add weights in a semiring,
get many useful NLP algorithms.

* Eisner, Goldlust, and Smith (2004, 2005):
semiring-generic algorithms, Dyna.

Dynamic Programming

* Most views (exception is polytopes) can be
understood as DP algorithms.

— The low-level procedures we use are often DP.

— Even DP is too high-level to know the best way to
implement.

* Break a problem into slightly smaller problems with
optimal substructure.

— Best path to v depends on best paths to all u such
that (u,v) € E.

* Overlapping subproblems: each subproblem gets
used repeatedly, and there aren’ t too many of them.

Dynamic Programming

 Three main strategies for DP:

— Viterbi, Levenshtein edit distance, CKY: predefined,
“clever” ordering.

— Memoization
— Agenda (Dijkstra’ s algorithm, A*)
* Things to remember in general:

— The hypergraph may too big to represent explicitly;
exhaustive calculation may be too expensive.

— The hypergraph may or may not have properties that make
“clever” orderings possible.

— DP does not imply polynomial time and space! Most
common approximations when the desired state space is
too big: beam search, cube pruning, agendas with early

stopping, ...

Summary

* Decoding is the general problem of choosing a
complex structure.

— Linguistic analysis, machine translation, speech
recognition, ...

— Statistical models are usually involved (not
necessarily probabilistic).

* No perfect general view, but much can be
gained through a combination of views.

* First question: can | solve it exactly with DP?

