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Hidden Markov Model

• X and Y are both sequences of symbols
– X is a sequence from the vocabulary Σ

– Y is a sequence from the state space Λ

• Parameters:
– Transitions γ including γ(stop | s), γ(s | start)

– Emissions η



Hidden Markov Model

• The joint model’s independence assumptions 
are easy to capture with a Bayesian network.
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Hidden Markov Model

• The MPE/MAP inference problem is to find 
the most probable value of Y given X = x.
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Hidden Markov Model

• The MPE/MAP inference problem is to find 
the most probable value of Y given X = x.

• Markov network:
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Markov Network

• A different graphical model representation; undirected.  
Vertices are still r.v.s.

• Every clique C in the graph gets a local scoring function 
φC that maps assignments to values.

• This score can be globally renormalized to obtain a 
probabilistic interpretation.  (Not today.)



Restriction #1

1. The score function factors locally.

– The more locally, the better!



Linear Models

• Define a feature vector function g that maps (x, y) pairs 
into d-dimensional real space.

• Score is linear in g(x, y).

• Results:  
– decoding seeks y to maximize the score.

– learning seeks w to … do something we’ll talk about later.

• Extremely general!



Generic Noisy Channel as Linear Model

• Of course, the two probability terms are 
typically composed of “smaller” factors; each 
can be understood as an exponentiated 
weight.



Max Ent Models as Linear Models



HMMs as Linear Models



Restrictions #1, #2

1. The score function factors locally.

– The more locally, the better!

2. The local scoring functions are linear in the 
features. 



Running Example

• BIO sequence labeling, here applied to NER

• Often solved with HMMs, CRFs, M3Ns …



Factorization

Assumption:

Score is a sum of local “part” scores

Parts = nodes and edges in a graph, rules in a tree

space of feasible outputs



Named Entity Recognition

Apple Computer bought Smart Systems Inc. located in Arkansas.

B-ORG     I-ORG           O     B-ORG      I-ORG   I-ORG   O        O     I-LOC



Named Entity Recognition

Apple Computer bought Smart Systems Inc. located in Arkansas.
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(What is Not A Linear Model?)

• Probabilistic models with hidden variables, 
requiring general MAP inference:

• Models based on non-linear kernels

• Most neural networks (those with non-linear 
activation functions)



Lecture Outline

✓Viterbi algorithm

✓Decoding more generally

3. Five views



1.  Probabilistic Graphical Models

• View the linguistic structure as a collection of 
random variables that are interdependent.

• Represent interdependencies as a directed or 
undirected graphical model.

• Conditional probability tables (BNs) or factors 
(MNs) encode the probability distribution.

• Use standard techniques from PGMs to 
decode.



Inference in Graphical Models

• General algorithm for exact MPE inference:  
variable elimination.
– Iteratively solve for the best values of each 

variable conditioned on values of “preceding”
neighbors.

– Then trace back.

– Challenge:  order the r.v.s for efficiency!

The Viterbi algorithm is an instance of 
max-product variable elimination!



Hidden Markov Model

• When we eliminate Y1, we take a product of 
three relevant factors.

• γ(Y1 | start)

• η(w1 | Y1), reduced to the observed value w1

• γ(Y2 | Y1)
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Factor Representation
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Hidden Markov Model

• When we eliminate Y1, we first take a product 
of two factors that only involve Y1.
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Hidden Markov Model

• When we eliminate Y1, we first take a product 
of two factors that only involve Y1.

• This is the Viterbi probability vector for Y1.
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Hidden Markov Model

• When we eliminate Y1, we first take a product 
of two factors that only involve Y1.

• This is the Viterbi probability vector for Y1.

• Eliminating Y1 equates to solving the Viterbi 
probabilities for Y2.
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Hidden Markov Model

• Product of all factors involving Y1, then 
reduce.

• φ2(Y2) = maxy∈Val(Y1) (φ1(y)⨉ p(Y2 | y))

• This factor holds Viterbi probabilities for Y2.

Y2 Y3 Yn…



Y2

Hidden Markov Model

• When we eliminate Y2, we take a product of 
the analogous two relevant factors.

• Then reduce.

• φ3(Y3) = maxy∈Val(Y2) (φ2(y) ⨉ p(Y3 | y))

Y3 Yn…



Yn

Hidden Markov Model

• At the end, we have one final factor with one 
row, φn+1.

• This is the score of the best sequence.

• Use backtrace to recover values.



Why Think This Way?

• Easy to see how to generalize HMMs.
– More evidence

– More factors

– More hidden structure

– More dependencies

• Probabilistic interpretation of factors is not 
central to finding the “best” Y …
– Many factors are not conditional probability 

tables.



Generalization Example 1

• Each word also depends on previous state.
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Generalization Example 2

• “Trigram” HMM

Y1
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Generalization Example 3

• Aggregate bigram model (Saul and Pereira, 
1997)

Y1

X1 X2 X3 X4 X5

Y2 Y3 Y4 Y5



Inference in Graphical Models

• Remember:  more edges make inference more 
expensive.

– Fewer edges means stronger independence.

• Really pleasant:



Inference in Graphical Models

• Remember:  more edges make inference more 
expensive.

– Fewer edges means stronger independence.

• Really unpleasant:



Lecture Outline

✓Viterbi algorithm

✓Decoding more generally

3. Five views

✓ MPE/MAP inference in a graphical model



2.  Polytopes



“Parts”

• Assume that feature function g breaks down 
into local parts.

• Each part has an alphabet of possible values.

– Decoding is choosing values for all parts, with 
consistency constraints.

– (In the graphical models view, a part is a clique.)



Example

• One part per word, each is in {B, I, O}

• No features look at multiple parts

– Fast inference

– Not very expressive



Example

• One part per bigram, each is in {BB, BI, BO, IB, 
II, IO, OB, OO}

• Features and constraints can look at pairs 
– Slower inference

– A bit more expressive



Geometric View

• Let zi,π be 1 if part i takes value π and 0 
otherwise.

• z is a vector in {0, 1}N

– N = total number of localized part values

– Each z is a vertex of the unit cube



Score is Linear in z

not really 
equal; need 
to transform 
back to get y



Polyhedra

• Not all vertices of the N-dimensional unit cube 
satisfy the constraints.

– E.g., can’t have z1,BI = 1 and z2,BI = 1

• Sometimes we can write down a small 
(polynomial number) of linear constraints on 
z.

• Result:  linear objective, linear constraints, 
integer constraints …





Integer Linear Programming

• Very easy to add new constraints and non-local 
features.

• Many decoding problems have been mapped to 
ILP (sequence labeling, parsing, …), but it’s not 
always trivial. 

• NP-hard in general.
– But there are packages that often work well in 

practice (e.g., CPLEX)

– Specialized algorithms in some cases

– LP relaxation for approximate solutions





Remark

• Graphical models assumed a probabilistic 
interpretation

– Though they are not always learned using a 
probabilistic interpretation!

• The polytope view is agnostic about how you 
interpret the weights.

– It only says that the decoding problem is an ILP.



3.  Weighted Parsing



Grammars

• Grammars are often associated with natural 
language parsing, but they are extremely 
powerful for imposing constraints.

• We can add weights to them.
– HMMs are a kind of weighted regular grammar 

(closely connected to WFSAs)

– PCFGs are a kind of weighted CFG

– Many, many more.

• Weighted parsing:  find the maximum-weighted 
derivation for a string x. 



Decoding as Weighted Parsing

• Every valid y is a grammatical derivation 
(parse) for x.

– HMM:  sequence of “grammatical” states is one 
allowed by the transition table.

• Augment parsing algorithms with weights and 
find the best parse. 

The Viterbi algorithm is an instance of 
recognition by a weighted grammar!



BIO Tagging as a CFG

• Weighted (or probabilistic) CKY is a dynamic 
programming algorithm very similar in 
structure to classical CKY.



4.  Paths and Hyperpaths



Best Path

• General idea:  take x and build a graph.

• Score of a path factors into the edges.

• Decoding is finding the best path.

The Viterbi algorithm is an instance of 
finding a best path!



“Lattice” View of Viterbi



A Generic Best Path Algorithm

• Input:  directed graph G = (V, E), cost : E → ℝ, start vertex v0

• Output:  d : V → ℝ (shortest path function) and back pointers 
b : V → V 

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
while d has not converged:

pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v) 
b(v) := u



Ordering Updates

• Naïve ways of choosing edges will lead to 
cyclic updating and gross inefficiency!

• Before considering various ways of doing it, 
let's consider how the Viterbi algorithm is 
essentially solving the same problem.



Viterbi Algorithm 
(In the Style of A Best Path Algorithm)

• Input:  
– directed graph G = (V, E) where 

each vertex v = (q, t), q ∈ Q ∪ {∅}, t ∈ {-1, 0, 1, …, n} 
and each edge (u, v) = ((q, t), (q', t + 1))

– cost : E → ℝ, defined by 
cost((q, t), (q', t + 1)) = – log γ(q' | q) – log η(st+1 | q) – log (1 - ξ(q))
cost((q, n - 1), (q', n)) = – log γ(q' | q) – log η(st+1 | q) – log ξ(q')
cost((∅, -1), (q, 0)) = – log π(q)

– fixed start vertex v0 = (∅, -1)

• Output:  d : V → ℝ (shortest path function) and back pointers b : V → V 

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
perform a topological sort on V
while d has not converged: for each v in top-sort order:

pick an arbitrary edge (u, v)
for each (u, v) ∈ E:  

if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v) 
b(v) := u

// d(v) and b(v) are now known



The Viterbi Trick

• From a “best path” perspective, Viterbi is:

– defining the vertices and edges to have special 
structure (state/time step)

– assigning costs based on HMM weights and the 
specific input string s1 … sn

– ordering the edges cleverly to make things 
efficient

• Note also:  Viterbi's graph has no cycles.



Another Variant:
“Forward”Updating

• After topological sort, can also choose all edges going out 
of current node.

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
perform a topological sort on V
for each u in top-sort order:

for each (u, v) ∈ E:  
if d(u) + cost(u, v) < d(v):

d(v) := d(u) + cost(u, v) 
b(v) := u



Memoized Recursion

• Input:  directed graph G = (V, E), cost : E → ℝ, start vertex v0, target vertex vt

• Output:  d : V → ℝ (shortest path function) and back pointers b : V → V 

for all v ∈ V \ {v0}, d(v) := ∅ and b(v) := ∅
set d(v0) = 0
memoize(vt)

memoize(v):
// guaranteed to return best-cost path score for v
if d(v) = ∅:

d(v) := ∞
for each (u, v) ∈ E:  

if memoize(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v) 
b(v) := u

return d(v)



A Generic Best Path Algorithm

• Input:  directed graph G = (V, E), cost : E → ℝ, start vertex v0

• Output:  d : V → ℝ (shortest path function) and back pointers 
b : V → V 

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
while d has not converged:

pick an arbitrary edge (u, v)
if d(u) + cost(u, v) < d(v):
d(v) := d(u) + cost(u, v) 
b(v) := u



Dijkstra's Algorithm

• Input:  directed graph G = (V, E), cost : E → ℝ≥0 (important!), start vertex v0

• Output:  d : V → ℝ (shortest path function) and back pointers b : V → V 

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
Q := priority queue on V ordered by d (lower cost = higher priority)
while d has not converged: while Q is not empty:

pick an arbitrary edge (u, v)
u := extract-min(Q)
for each (u, v) ∈ E:
if d(u) + cost(u, v) < d(v):

d(v) := d(u) + cost(u, v) 
b(v) := u
update v's priority in Q 



A* Algorithm

• Input:  directed graph G = (V, E), cost : E → ℝ≥0, start vertex v0, target 
vertex vt, heuristic h : V → ℝ≥0 such that h(v) ≤ best-cost(v, vt)

• Output:  d : V → ℝ (shortest path function) and back pointers b : V → V 

for all v ∈ V \ {v0}, d(v) := ∞ and b(v) := ∅
set d(v0) = 0
Q := priority queue on V ordered by d + h (lower cost = higher priority)
while Q is not empty:

u := extract-min(Q)
for each (u, v) ∈ E:
if d(u) + cost(u, v) < d(v):

d(v) := d(u) + cost(u, v) 
b(v) := u
update v's priority in Q 



Minimum Cost Hyperpath

• General idea:  take x and build a hypergraph.

• Score of a hyperpath factors into the 
hyperedges.

• Decoding is finding the best hyperpath.

• This connection was elucidated by Klein and 
Manning (2002).



Parsing as a Hypergraph



Parsing as a Hypergraph

cf. “Dean for democracy”



Parsing as a Hypergraph

Forced to work on his thesis, sunshine streaming in the window, 
Mike experienced a …



Parsing as a Hypergraph

Forced to work on his thesis, sunshine streaming in the window, 
Mike began to …



Why Hypergraphs?

• Useful, compact encoding of the hypothesis 
space.

– Build hypothesis space using local features, maybe 
do some filtering.

– Pass it off to another module for more fine-
grained scoring with richer or more expensive 
features.



5.  Weighted Logic Programming



Logic Programming

• Start with a set of axioms and a set of inference 
rules.

• The goal is to prove a specific theorem, goal.

• Many approaches, but we assume a deductive
approach.
– Start with axioms, iteratively produce more theorems.





Weighted Logic Programming

• Twist:  axioms have weights.

• Want the proof of goal with the best score:

• Note that axioms can be used more than once 
in a proof (y).



Whence WLP?

• Shieber, Schabes, and Pereira (1995):  many 
parsing algorithms can be understood in the 
same deductive logic framework.

• Goodman (1999):  add weights in a semiring, 
get many useful NLP algorithms.

• Eisner, Goldlust, and Smith (2004, 2005):  
semiring-generic algorithms, Dyna.



Dynamic Programming

• Most views (exception is polytopes) can be 
understood as DP algorithms.
– The low-level procedures we use are often DP.

– Even DP is too high-level to know the best way to 
implement. 

• Break a problem into slightly smaller problems with 
optimal substructure.
– Best path to v depends on best paths to all u such 

that (u,v) ∈ E.
• Overlapping subproblems:  each subproblem gets 

used repeatedly, and there aren’t too many of them.



Dynamic Programming

• Three main strategies for DP:
– Viterbi, Levenshtein edit distance, CKY:  predefined, 
“clever” ordering.

– Memoization
– Agenda (Dijkstra’s algorithm, A*)

• Things to remember in general:
– The hypergraph may too big to represent explicitly; 

exhaustive calculation may be too expensive.
– The hypergraph may or may not have properties that make 

“clever” orderings possible.
– DP does not imply polynomial time and space!  Most 

common approximations when the desired state space is 
too big:  beam search, cube pruning, agendas with early 
stopping, ...



Summary

• Decoding is the general problem of choosing a 
complex structure.
– Linguistic analysis, machine translation, speech 

recognition, …

– Statistical models are usually involved (not 
necessarily probabilistic).

• No perfect general view, but much can be 
gained through a combination of views.

• First question:  can I solve it exactly with DP?


