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“Parts”

• Assume	that	feature	function	g breaks	down	
into	local	parts.

• Each	part	has	an	alphabet	of	possible	values.
– Decoding	is	choosing	values	for	all	parts,	with	
consistency	constraints.

– (In	the	graphical	models	view,	a	part	is	a	clique.)

g(x,y) =
#parts(x)�

i=1

f(�i(x,y))



Example

• One	part	per	word,	each	is	in	{B,	I,	O}
• No	features	look	at	multiple	parts

– Fast	inference
– Not	very	expressive



Example

• One	part	per	bigram,	each	is	in	{BB,	BI,	BO,	
IB,	II,	IO,	OB,	OO}

• Features	and	constraints	can	look	at	pairs	
– Slower	inference
– A	bit	more	expressive



Geometric	View

• Let	zi,π be	1	if	part	i takes	value	π and	0	
otherwise.

• z is	a	vector	in	{0,	1}N
– N	=	total	number	of	localized	part	values
– Each z is	a	vertex	of	the	unit	cube



Score	is	Linear	in	z

arg max
y

w⇥g(x,y) = arg max
y

w⇥
#parts(x)⇤

i=1

f(�i(x,y))

= arg max
y

w⇥
#parts(x)⇤

i=1

⇤

��Values(�i)

f(�)1{�i(x,y) = �}

= arg max
z�Zx

w⇥
#parts(x)⇤

i=1

⇤

��Values(�i)

f(�)zi,�

= arg max
z�Zx

w⇥Fxz

= arg max
z�Zx

�
w⇥Fx

⇥
z

not	really	
equal;	need	
to	transform	
back	to	get	y



Polyhedra

• Not	all	vertices	of	the	N-dimensional	unit	cube	
satisfy	the	constraints.
– E.g.,	can’t	have	z1,BI =	1 and	z2,BI =	1

• Sometimes	we	can	write	down	a	small	
(polynomial	number)	of	linear	constraints	on	
z.

• Result:		linear	objective,	linear	constraints,	
integer	constraints	…





Integer	Linear	Programming

• Very	easy	to	add	new	constraints	and	non-local	
features.

• Many	decoding	problems	have	been	mapped	to	
ILP	(sequence	labeling,	parsing,	…),	but	it’s	not	
always	trivial.	

• NP-hard	in	general.
– But	there	are	packages	that	often	work	well	in	
practice	(e.g.,	CPLEX)

– Specialized	algorithms	in	some	cases
– LP	relaxation	for	approximate	solutions





Remark

• Graphical	models	assumed	a	probabilistic	
interpretation
– Though	they	are	not	always	learned	using	a	
probabilistic	interpretation!

• The	polytope	view	is	agnostic	about	how	you	
interpret	the	weights.
– It	only	says	that	the	decoding	problem	is	an	ILP.



3.		Weighted	Parsing



Grammars

• Grammars	are	often	associated	with	natural	
language	parsing,	but	they	are	extremely	
powerful	for	imposing	constraints.

• We	can	add	weights	to	them.
– HMMs	are	a	kind	of	weighted	regular	grammar	
(closely	connected	to	WFSAs)

– PCFGs	are	a	kind	of	weighted	CFG
– Many,	many	more.

• Weighted	parsing:		find	the	maximum-weighted	
derivation for	a	string	x.	



Decoding	as	Weighted	Parsing

• Every	valid	y is	a	grammatical	derivation	
(parse)	for	x.
– HMM:		sequence	of	“grammatical” states	is	one	
allowed	by	the	transition	table.

• Augment	parsing	algorithms	with	weights	and	
find	the	best	parse.	

The	Viterbi	algorithm	is	an	instance	of	
recognition	by	a	weighted	grammar!



BIO	Tagging	as	a	CFG

• Weighted	(or	probabilistic)	CKY	is	a	dynamic	
programming	algorithm	very	similar	in	
structure	to	classical	CKY.



4.		Paths	and	Hyperpaths



Best	Path

• General	idea:		take	x and	build	a	graph.
• Score	of	a	path	factors	into	the	edges.

• Decoding	is	finding	the	best	path.

arg max
y

w⇥g(x,y) = arg max
y

w⇥
�

e�Edges

f(e)1{e is crossed by y’s path}

The	Viterbi	algorithm	is	an	instance	of	
finding	a	best	path!



“Lattice” View	of	Viterbi



A	Generic	Best	Path	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	

b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
while	d	has	not	converged:

pick	an	arbitrary	edge	(u,	v)
if	d(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u



Ordering	Updates

• Naïve	ways	of	choosing	edges	will	lead	to	
cyclic	updating	and	gross	inefficiency!

• Before	considering	various	ways	of	doing	it,	
let's	consider	how	the	Viterbi	algorithm	is	
essentially	solving	the	same	problem.



Viterbi	Algorithm	
(In	the	Style	of	A	Best	Path	Algorithm)

• Input:		
– directed	graph	G	=	(V,	E)	where	

each	vertex	v	=	(q,	t),	q	∈ Q	∪ {∅},	t	∈ {-1,	0,	1,	…,	n}	
and	each	edge	(u,	v)	=	((q,	t),	(q',	t	+	1))

– cost	:	E	→	ℝ,	defined	by	
cost((q,	t),	(q',	t	+	1))	=	– log	γ(q' |	q)	– log	η(st+1 |	q)	– log	(1	- ξ(q))
cost((q,	n	- 1),	(q',	n))	=	– log	γ(q' |	q)	– log	η(st+1 |	q)	– log	ξ(q')
cost((∅,	-1),	(q,	0))	=	– log π(q)

– fixed	start	vertex	v0 =	(∅,	-1)
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
perform	a	topological	sort	on	V
while	d	has	not	converged: for	each	v	in	top-sort	order:

pick	an	arbitrary	edge	(u,	v)
for	each	(u,	v)	∈ E:		
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

//	d(v)	and	b(v)	are	now	known



The	Viterbi	Trick

• From	a	“best	path”	perspective,	Viterbi	is:
– defining	the	vertices	and	edges	to	have	special	
structure	(state/time	step)

– assigning	costs	based	on	HMM	weights	and	the	
specific	input	string	s1 …	sn

– ordering	the	edges	cleverly	to	make	things	
efficient

• Note	also:		Viterbi's	graph	has	no	cycles.



Another	Variant:
“Forward” Updating

• After	topological	sort,	can	also	choose	all	edges	going	out	
of current	node.

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
perform	a	topological	sort	on	V
for	each	u	in	top-sort	order:

for	each	(u,	v)	∈ E:		
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u



Memoized	Recursion
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0,	target	vertex	vt
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∅ and	b(v)	:=	∅
set	d(v0)	=	0
memoize(vt)

memoize(v):
//	guaranteed	to	return	best-cost	path	score	for	v
if	d(v)	=	∅:
d(v)	:=	∞
for	each	(u,	v)	∈ E:		

if	memoize(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

return	d(v)



A	Generic	Best	Path	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	

b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
while	d	has	not	converged:

pick	an	arbitrary	edge	(u,	v)
if	d(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u



Dijkstra's	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ≥0	(important!),	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
Q	:=	priority	queue	on	V	ordered	by	d	(lower	cost	=	higher	priority)
while	d	has	not	converged: while	Q	is	not	empty:

pick	an	arbitrary	edge	(u,	v)
u	:=	extract-min(Q)
for	each	(u,	v)	∈ E:
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u
update	v's	priority	in	Q	



A*	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ≥0,	start	vertex	v0,	target	

vertex	vt,	heuristic	h	:	V →	ℝ≥0 such	that	h(v)	≤	best-cost(v,	vt)
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
Q	:=	priority	queue	on	V	ordered	by	d	+	h	(lower	cost	=	higher	priority)
while	Q	is	not	empty:

u	:=	extract-min(Q)
for	each	(u,	v)	∈ E:
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u
update	v's	priority	in	Q	



Minimum	Cost	Hyperpath

• General	idea:		take	x and	build	a	hypergraph.
• Score	of	a	hyperpath	factors	into	the	
hyperedges.

• Decoding	is	finding	the	best	hyperpath.

• This	connection	was	elucidated	by	Klein	and	
Manning	(2002).



Parsing	as	a	Hypergraph



Parsing	as	a	Hypergraph

cf.	“Dean	for	democracy”



Parsing	as	a	Hypergraph

Forced	to	work	on	his	thesis,	sunshine	streaming	in	the	window,	
Mike	experienced	a	…



Parsing	as	a	Hypergraph

Forced	to	work	on	his	thesis,	sunshine	streaming	in	the	window,	
Mike	began	to	…



Why	Hypergraphs?

• Useful,	compact	encoding	of	the	hypothesis	
space.
– Build	hypothesis	space	using	local	features,	maybe	
do	some	filtering.

– Pass	it	off	to	another	module	for	more	fine-
grained	scoring	with	richer	or	more	expensive	
features.



5.		Weighted	Logic	Programming



Logic	Programming

• Start	with	a	set	of	axioms	and	a	set	of	inference	
rules.

• The	goal	is	to	prove	a	specific	theorem,	goal.
• Many	approaches,	but	we	assume	a	deductive
approach.
– Start	with	axioms,	iteratively	produce	more	theorems.





Weighted	Logic	Programming

• Twist:		axioms	have	weights.
• Want	the	proof	of	goal with	the	best	score:

• Note	that	axioms	can	be	used	more	than	once	
in	a	proof	(y).

arg max
y

w⇥g(x,y) = arg max
y

w⇥
�

a�Axioms

f(a)freq(a;y)



Whence	WLP?

• Shieber,	Schabes,	and	Pereira	(1995):		many	
parsing	algorithms	can	be	understood	in	the	
same	deductive	logic	framework.

• Goodman	(1999):		add	weights	in	a	semiring,	
get	many	useful	NLP	algorithms.

• Eisner,	Goldlust,	and	Smith	(2004,	2005):		
semiring-generic	algorithms,	Dyna.



Dynamic	Programming

• Most	views	(exception	is	polytopes)	can	be	
understood	as	DP	algorithms.
– The	low-level	procedures	we	use	are	often	DP.
– Even	DP	is	too	high-level	to	know	the	best	way	to	
implement.	

• Break	a	problem	into	slightly	smaller	problems	with	
optimal	substructure.
– Best	path	to	v	depends	on	best	paths	to	all	u	such	
that	(u,v)	∈ E.

• Overlapping	subproblems:		each	subproblem gets	
used	repeatedly,	and	there	aren’t	too	many	of	them.



Dynamic	Programming
• Three	main	strategies	for	DP:

– Viterbi,	Levenshtein edit	distance,	CKY:		predefined,	
“clever” ordering.

– Memoization
– Agenda	(Dijkstra’s	algorithm,	A*)

• Things	to	remember	in	general:
– The	hypergraph may	too	big	to	represent	explicitly;	
exhaustive	calculation	may	be	too	expensive.

– The	hypergraph may	or	may	not	have	properties	that	make	
“clever” orderings	possible.

– DP	does	not	imply	polynomial	time	and	space!		Most	
common	approximations	when	the	desired	state	space	is	
too	big:		beam	search,	cube	pruning,	agendas	with	early	
stopping,	...



Summary

• Decoding	is	the	general	problem	of	choosing	a	
complex	structure.
– Linguistic	analysis,	machine	translation,	speech	
recognition,	…

– Statistical	models	are	usually	involved	(not	
necessarily	probabilistic).

• No	perfect	general	view,	but	much	can	be	
gained	through	a	combination	of	views.

• First	question:		can	I	solve	it	exactly	with	DP?


