
Approaches	to	Inference

inference

exact

variable	
elimination

dynamic	
programs

ILP

approximate

randomized

MCMC

Gibbs

importance	
sampling

randomized	
search

simulated	
annealing

deterministic

variational

mean	field

loopy	belief	
propagation

LP	
relaxations

dual	
decomp.

local	search

beam	search

red = hard inference
blue = soft inference
purple = both

“Parts”

• Assume	that	feature	function	g breaks	down	
into	local	parts.

• Each	part	has	an	alphabet	of	possible	values.
– Decoding	is	choosing	values	for	all	parts,	with	
consistency	constraints.

– (In	the	graphical	models	view,	a	part	is	a	clique.)

g(x,y) =
#parts(x)�

i=1

f(�i(x,y))

Example

• One	part	per	word,	each	is	in	{B,	I,	O}
• No	features	look	at	multiple	parts

– Fast	inference
– Not	very	expressive

Example

• One	part	per	bigram,	each	is	in	{BB,	BI,	BO,	
IB,	II,	IO,	OB,	OO}

• Features	and	constraints	can	look	at	pairs	
– Slower	inference
– A	bit	more	expressive

Geometric	View

• Let	zi,π be	1	if	part	i takes	value	π and	0	
otherwise.

• z is	a	vector	in	{0,	1}N
– N	=	total	number	of	localized	part	values
– Each z is	a	vertex	of	the	unit	cube

Score	is	Linear	in	z

arg max
y

w⇥g(x,y) = arg max
y

w⇥
#parts(x)⇤

i=1

f(�i(x,y))

= arg max
y

w⇥
#parts(x)⇤

i=1

⇤

��Values(�i)

f(�)1{�i(x,y) = �}

= arg max
z�Zx

w⇥
#parts(x)⇤

i=1

⇤

��Values(�i)

f(�)zi,�

= arg max
z�Zx

w⇥Fxz

= arg max
z�Zx

�
w⇥Fx

⇥
z

not	really	
equal;	need	
to	transform	
back	to	get	y

Polyhedra

• Not	all	vertices	of	the	N-dimensional	unit	cube	
satisfy	the	constraints.
– E.g.,	can’t	have	z1,BI =	1 and	z2,BI =	1

• Sometimes	we	can	write	down	a	small	
(polynomial	number)	of	linear	constraints	on	
z.

• Result:		linear	objective,	linear	constraints,	
integer	constraints	…

Integer	Linear	Programming

• Very	easy	to	add	new	constraints	and	non-local	
features.

• Many	decoding	problems	have	been	mapped	to	
ILP	(sequence	labeling,	parsing,	…),	but	it’s	not	
always	trivial.	

• NP-hard	in	general.
– But	there	are	packages	that	often	work	well	in	
practice	(e.g.,	CPLEX)

– Specialized	algorithms	in	some	cases
– LP	relaxation	for	approximate	solutions

Remark

• Graphical	models	assumed	a	probabilistic	
interpretation
– Though	they	are	not	always	learned	using	a	
probabilistic	interpretation!

• The	polytope	view	is	agnostic	about	how	you	
interpret	the	weights.
– It	only	says	that	the	decoding	problem	is	an	ILP.

3.		Weighted	Parsing

Grammars

• Grammars	are	often	associated	with	natural	
language	parsing,	but	they	are	extremely	
powerful	for	imposing	constraints.

• We	can	add	weights	to	them.
– HMMs	are	a	kind	of	weighted	regular	grammar	
(closely	connected	to	WFSAs)

– PCFGs	are	a	kind	of	weighted	CFG
– Many,	many	more.

• Weighted	parsing:		find	the	maximum-weighted	
derivation for	a	string	x.	

Decoding	as	Weighted	Parsing

• Every	valid	y is	a	grammatical	derivation	
(parse)	for	x.
– HMM:		sequence	of	“grammatical” states	is	one	
allowed	by	the	transition	table.

• Augment	parsing	algorithms	with	weights	and	
find	the	best	parse.	

The	Viterbi	algorithm	is	an	instance	of	
recognition	by	a	weighted	grammar!

BIO	Tagging	as	a	CFG

• Weighted	(or	probabilistic)	CKY	is	a	dynamic	
programming	algorithm	very	similar	in	
structure	to	classical	CKY.

4.		Paths	and	Hyperpaths

Best	Path

• General	idea:		take	x and	build	a	graph.
• Score	of	a	path	factors	into	the	edges.

• Decoding	is	finding	the	best	path.

arg max
y

w⇥g(x,y) = arg max
y

w⇥
�

e�Edges

f(e)1{e is crossed by y’s path}

The	Viterbi	algorithm	is	an	instance	of	
finding	a	best	path!

“Lattice” View	of	Viterbi

A	Generic	Best	Path	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	

b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
while	d	has	not	converged:

pick	an	arbitrary	edge	(u,	v)
if	d(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

Ordering	Updates

• Naïve	ways	of	choosing	edges	will	lead	to	
cyclic	updating	and	gross	inefficiency!

• Before	considering	various	ways	of	doing	it,	
let's	consider	how	the	Viterbi	algorithm	is	
essentially	solving	the	same	problem.

Viterbi	Algorithm	
(In	the	Style	of	A	Best	Path	Algorithm)

• Input:		
– directed	graph	G	=	(V,	E)	where	

each	vertex	v	=	(q,	t),	q	∈ Q	∪ {∅},	t	∈ {-1,	0,	1,	…,	n}	
and	each	edge	(u,	v)	=	((q,	t),	(q',	t	+	1))

– cost	:	E	→	ℝ,	defined	by	
cost((q,	t),	(q',	t	+	1))	=	– log	γ(q' |	q)	– log	η(st+1 |	q)	– log	(1	- ξ(q))
cost((q,	n	- 1),	(q',	n))	=	– log	γ(q' |	q)	– log	η(st+1 |	q)	– log	ξ(q')
cost((∅,	-1),	(q,	0))	=	– log π(q)

– fixed	start	vertex	v0 =	(∅,	-1)
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
perform	a	topological	sort	on	V
while	d	has	not	converged: for	each	v	in	top-sort	order:

pick	an	arbitrary	edge	(u,	v)
for	each	(u,	v)	∈ E:		
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

//	d(v)	and	b(v)	are	now	known

The	Viterbi	Trick

• From	a	“best	path”	perspective,	Viterbi	is:
– defining	the	vertices	and	edges	to	have	special	
structure	(state/time	step)

– assigning	costs	based	on	HMM	weights	and	the	
specific	input	string	s1 …	sn

– ordering	the	edges	cleverly	to	make	things	
efficient

• Note	also:		Viterbi's	graph	has	no	cycles.

Another	Variant:
“Forward” Updating

• After	topological	sort,	can	also	choose	all	edges	going	out	
of current	node.

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
perform	a	topological	sort	on	V
for	each	u	in	top-sort	order:

for	each	(u,	v)	∈ E:		
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

Memoized	Recursion
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0,	target	vertex	vt
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∅ and	b(v)	:=	∅
set	d(v0)	=	0
memoize(vt)

memoize(v):
//	guaranteed	to	return	best-cost	path	score	for	v
if	d(v)	=	∅:
d(v)	:=	∞
for	each	(u,	v)	∈ E:		

if	memoize(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

return	d(v)

A	Generic	Best	Path	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ,	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	

b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
while	d	has	not	converged:

pick	an	arbitrary	edge	(u,	v)
if	d(u)	+	cost(u,	v)	<	d(v):
d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u

Dijkstra's	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ≥0	(important!),	start	vertex	v0
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
Q	:=	priority	queue	on	V	ordered	by	d	(lower	cost	=	higher	priority)
while	d	has	not	converged: while	Q	is	not	empty:

pick	an	arbitrary	edge	(u,	v)
u	:=	extract-min(Q)
for	each	(u,	v)	∈ E:
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u
update	v's	priority	in	Q	

A*	Algorithm
• Input:		directed	graph	G	=	(V,	E),	cost	:	E	→	ℝ≥0,	start	vertex	v0,	target	

vertex	vt,	heuristic	h	:	V →	ℝ≥0 such	that	h(v)	≤	best-cost(v,	vt)
• Output:		d	:	V	→	ℝ (shortest	path	function)	and	back	pointers	b	:	V	→	V	

for	all	v	∈ V	\ {v0},	d(v)	:=	∞	and	b(v)	:=	∅
set	d(v0)	=	0
Q	:=	priority	queue	on	V	ordered	by	d	+	h	(lower	cost	=	higher	priority)
while	Q	is	not	empty:

u	:=	extract-min(Q)
for	each	(u,	v)	∈ E:
if	d(u)	+	cost(u,	v)	<	d(v):

d(v)	:=	d(u)	+	cost(u,	v)	
b(v)	:=	u
update	v's	priority	in	Q	

Minimum	Cost	Hyperpath

• General	idea:		take	x and	build	a	hypergraph.
• Score	of	a	hyperpath	factors	into	the	
hyperedges.

• Decoding	is	finding	the	best	hyperpath.

• This	connection	was	elucidated	by	Klein	and	
Manning	(2002).

Parsing	as	a	Hypergraph

Parsing	as	a	Hypergraph

cf.	“Dean	for	democracy”

Parsing	as	a	Hypergraph

Forced	to	work	on	his	thesis,	sunshine	streaming	in	the	window,	
Mike	experienced	a	…

Parsing	as	a	Hypergraph

Forced	to	work	on	his	thesis,	sunshine	streaming	in	the	window,	
Mike	began	to	…

Why	Hypergraphs?

• Useful,	compact	encoding	of	the	hypothesis	
space.
– Build	hypothesis	space	using	local	features,	maybe	
do	some	filtering.

– Pass	it	off	to	another	module	for	more	fine-
grained	scoring	with	richer	or	more	expensive	
features.

5.		Weighted	Logic	Programming

Logic	Programming

• Start	with	a	set	of	axioms	and	a	set	of	inference	
rules.

• The	goal	is	to	prove	a	specific	theorem,	goal.
• Many	approaches,	but	we	assume	a	deductive
approach.
– Start	with	axioms,	iteratively	produce	more	theorems.

Weighted	Logic	Programming

• Twist:		axioms	have	weights.
• Want	the	proof	of	goal with	the	best	score:

• Note	that	axioms	can	be	used	more	than	once	
in	a	proof	(y).

arg max
y

w⇥g(x,y) = arg max
y

w⇥
�

a�Axioms

f(a)freq(a;y)

Whence	WLP?

• Shieber,	Schabes,	and	Pereira	(1995):		many	
parsing	algorithms	can	be	understood	in	the	
same	deductive	logic	framework.

• Goodman	(1999):		add	weights	in	a	semiring,	
get	many	useful	NLP	algorithms.

• Eisner,	Goldlust,	and	Smith	(2004,	2005):		
semiring-generic	algorithms,	Dyna.

Dynamic	Programming

• Most	views	(exception	is	polytopes)	can	be	
understood	as	DP	algorithms.
– The	low-level	procedures	we	use	are	often	DP.
– Even	DP	is	too	high-level	to	know	the	best	way	to	
implement.	

• Break	a	problem	into	slightly	smaller	problems	with	
optimal	substructure.
– Best	path	to	v	depends	on	best	paths	to	all	u	such	
that	(u,v)	∈ E.

• Overlapping	subproblems:		each	subproblem gets	
used	repeatedly,	and	there	aren’t	too	many	of	them.

Dynamic	Programming
• Three	main	strategies	for	DP:

– Viterbi,	Levenshtein edit	distance,	CKY:		predefined,	
“clever” ordering.

– Memoization
– Agenda	(Dijkstra’s	algorithm,	A*)

• Things	to	remember	in	general:
– The	hypergraph may	too	big	to	represent	explicitly;	
exhaustive	calculation	may	be	too	expensive.

– The	hypergraph may	or	may	not	have	properties	that	make	
“clever” orderings	possible.

– DP	does	not	imply	polynomial	time	and	space!		Most	
common	approximations	when	the	desired	state	space	is	
too	big:		beam	search,	cube	pruning,	agendas	with	early	
stopping,	...

Summary

• Decoding	is	the	general	problem	of	choosing	a	
complex	structure.
– Linguistic	analysis,	machine	translation,	speech	
recognition,	…

– Statistical	models	are	usually	involved	(not	
necessarily	probabilistic).

• No	perfect	general	view,	but	much	can	be	
gained	through	a	combination	of	views.

• First	question:		can	I	solve	it	exactly	with	DP?

