Probability Distributions on Structured Objects

Bhiksha Raj 7 Feb 2018

Probability Outline

- Why probability?
- Probability review
- Multinomials vs. exponential parameterization
- Locally vs. globally normalized models & partition functions
- Examples

• What is "probability"?

- You roll a six-sided dice. What is the probability that you will get a 6?
 Why?
- What is the probability that you will get a A in this course?

– Why?

• Winter temperatures in Pittsburgh have fallen below 0oF in 143 of the past 1000 years. What

- Probability of 6 in the roll of a six-sided dice
 - *Classical Definition:* Ratio of number of "favorable" *outcomes* to total outcomes
- Probability that you will get a A in this course
 Belief
- Winter temps in Pitt have hit < 0oF in 143 of the past 1000 years. Probability that it will hit < 0oF this year

- A *numerical* way of specifying a belief that a particular *experiment* will have one of a set of *outcomes*
 - The set of outcomes is called an *event*

- The belief may be based on a variety of criteria
 - Total number of outcomes
 - Pure belief
 - Past experience

- What is "probability"?
- No real meaning
- Best understood as a *measure* computed over a set
- But what is in this set?
 - "Outcomes"...

Definitions

- **Experiment**: A single run of the process we are trying to characterize
 - E.g. Toss of a coin
 - E.g. Roll of a dice
 - E.g. Producing a sequence of words
 - E.g. Car driving down Forbes Ave
- **Outcome**: A result from this process
 - Heads vs. tails
 - Outcome 1 through 6

Outcomes and Events

- Outcome: A single result of
 - Typically represented by an
 - Outcomes must be
 - Mutually exclusive (any part not happen)
 - Collectively exhaustive: The specified as one of the outce

Outcomes, Events, and Sample Space

Outcomes, Events, and Sample Space

Axiomatic definition of probability

- From Kolmogorov..
 - Probability is a *measure* over t following properties
 - 1. The probability of an event i $\forall E \ P(E) \in \mathbb{I}$
 - 2. The probability of the entire P(0)

Outcomes, Events, and Sample Space

• "Discrete" sample spaces: Number of ways in which we can define events is *finite* or *countable*.

Definition: Probability *distribution*

- Let E_1, E_2, \dots be a set of events — The events are disjoint $E_i \cap E_j = \phi(nu)$
 - The events cover the sample s

Outcomes, Events, and Sample Space

Defining individual outcomes as e

 $- E_i = \{\omega_i\}$

Notation (don't blame me)

 Introducing some (bage) • For $E_i = \{\omega_i\}$, notat elementary events a $f(\omega_i)$

Probabilities over outcomes

$$\forall \quad \in \Omega, \quad f \quad \neq \in [0, 1]$$

$$\sum f \quad = 1$$
Probability mass function

An **event** is a subset (maybe one element) of the sample space, $E \subseteq \Omega$

$$P(E) = \sum f \, \boldsymbol{\ell} \, \boldsymbol$$

/ ****

- A random variable is a function that maps the sample space onto the real line
 - Can only use some portion of the real line

- A random variable is a function the real line
 - Can only use some portion of

Random Variable

- A random variable that maps the sample space onto a discrete set of points on the real line is called a *discrete Random Variable*
 - You can compose the discrete RVs even if the sample space is not discrete!!

- For a discrete sample space, the RV must necessarily be discrete
 - But a discrete RV does not imply a discrete sample space

Discrete Random Variable

- For a discrete sample space, the RV must necessarily be discrete
 - But a discrete RV does not imply a discrete sample space

P_X(x) is the probabili *variable X* takes the *v*

P_Y(y) is the probabili *variable Y* takes the *v*

Discrete Random Variable

.

For a "fair" dice ה / ה

.

D (1

• When we produce *multiple* RVs from the same sample space..

• When we produce *multiple* RVs from the same sample space..

• We can even mix discrete and continuous RVs

• When we produce *multiple* RVs from the same sample space..

No need for RVs..

For discrete sample spaces we will often dispense with the entire business of RVs and deal directly with events in the sample space
– Each RV is just a different way of creating a cover

of events over the sample space

- Each value of each (discrete) RV re
 - Each RV represents a different "d
 - The joint RV is combination of eve

Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A **joint probability distribution** is a probability distribution over joint r.v.'s with the following form:

$$Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix}$$

 $\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1 \qquad \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \ge 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$

Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A **joint probability distribution** is a probability distribution over joint r.v.'s with the following form:

$$Z = \begin{bmatrix} X(\omega) & \text{Words} \\ Y(\omega) & \text{Tag} \\ \end{bmatrix}_{s}$$

$$\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_{Z} \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1 \qquad \rho_{Z} \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \ge 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$$

Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A **joint probability distribution** is a probability distribution over r.v.'s with the following form:

$$Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix}$$
 Words Trees

 $\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1 \qquad \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \ge 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$
Joint Probability

- Probability over multiple event types
- Tool for reasoning about dependent (correlated) events

A **joint probability distribution** is a probability distribution over r.v.'s with the following form:

$$Z = \begin{bmatrix} X(\omega) \\ Y(\omega) \end{bmatrix} \qquad \begin{array}{c} \text{DNA} \\ \text{sequence} \\ \text{Proteins} \end{array}$$

 $\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = 1 \qquad \rho_Z \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) \ge 0 \quad \forall x \in \mathcal{X}, y \in \mathcal{Y}$

Probability of joint RV			
for	-		
"fair" dice:		1	

 Given a joint RV (X,) probabilities of the c marginal probability

$$p(X = x, Y = y) = \rho_{X,Y}(x, y)$$
$$p(X = x) = \sum_{y' \in \mathcal{Y}} p(X = x, Y = y')$$
$$p(Y = y) = \sum_{x' \in \mathcal{X}} p(X = x', Y = y)$$

$$\begin{split} \Omega &= \{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),\\ &(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),\\ &(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),\\ &(4,1),(4,2),(4,3),(4,4),(4,5),(4,6), p(X=4) = \sum_{y' \in [1,6]} p(X=4,Y=y')\\ &(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),\\ &(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),\} \end{split}$$

Sample space

•(NN, cat) •(NN, sloth) (NN, book)• •(JJ, fuzzy) •(VB, book) •(RB, quickly)

- In a joint model of word and tag sequences p(w,t)
 - The probability of a word sequence $p(\mathbf{w})$
 - The probability of a tag sequence p(t)
 - The probability of a word sequence with the word "cat" somewhere in it
 - The probability of a tag sequence containing three verbs in a row

Conditional probability

- Conditioning events are events the
 - They represent isolated worlds th sample space
 - The new completence is the con-

Conditional probability of events

• P(R|E) = the probabi scaled by the inverse

Conditional probability of events

$P(R|E)P(E = P_{X,Y}(x, y) = E$

Conditional Probability

The conditional probability is defined as follows:

$$p(X = x \mid Y = y) = \frac{p(X = x, Y = y)}{p(Y = y)} = \frac{\text{joint probability}}{\text{marginal}}$$

This assumes $p(Y = y) \neq 0$

We can construct joint probability distributions out of conditional distributions:

$$p(x \mid y)p(y) = p(x, y) = p(y \mid x)p(x)$$

Conditional Probability Distributions

The **conditional probability distribution** of a variable X given a variable Y has the following properties:

$$\forall \ y \in Y, \ \sum_{x \in X} p(X = x \mid Y = y) = 1$$

Conditional Probability Sample space •(NN, cat) •(NN, sloth) (NN, book)• •(JJ, fuzzy) $\bullet(VB, book)$ •(RB, quickly)

Conditional Probabilities

- In a joint model of word and tag sequences p(w,t)
 - The probability of a tag sequence given a word sequence $p(\mathbf{t} | \mathbf{w})$
 - The probability of a word sequence given a tag sequence p(w | t)

Joint and Marginal Probabilities

- In a joint model of word and tag sequences p(w,t)
 - The probability that the 3rd tag is VERB, given
 w = "Time flies *like* an arrow"
 p(t3 = VERB| w = Time flies like an arrow)
 - The probability that the 3rd word is *like*, given $\mathbf{w} =$ "Time flies _____ an arrow", t3 = VFRR $p(t3 = like | \mathbf{w} = Time flies _____ an arrow$ t3 = VERB)

Conditional probability of events

P(R|E)P(E

Chain Rule

$$p(a, b, c, d, \ldots) = p(a) \times$$

$$p(b \mid a) \times$$

$$p(c \mid a, b) \times$$

$$p(d \mid a, b, c) \times$$

- •
- •
- •

Conditional probability of events

P(R|E)P(E) = P(R

Bayes Rule

P(x|y) = -

4

__ (ייןיי) __

Independence

Two r.v.'s are **independent** iff

$$p(X = x, Y = y) = p(X = x) \times p(Y = y)$$

Equivalently (prove with def. of cond. prob.)

$$p(X = x \mid Y = y) = p(X = x)$$

Alternatively,

$$p(Y = y \mid X = x) = p(Y = y)$$

Conditional Independence

Two equivalent statements of conditional independence: $p(a, c \mid b) = p(a \mid b)p(c \mid b)$ and:

$$p(a \mid b, c) = p(a \mid b)$$

"If I know B, then C doesn't tell me about A" $p(a \mid b, c) = p(a \mid b)$ $p(a, b, c) = p(a \mid b, c)p(b, c)$ $= p(a \mid b, c)p(b \mid c)p(c)$

Conditional Independence

Two equivalent statements of conditional independence: $p(a, c \mid b) = p(a \mid b)p(c \mid b)$ and:

$$p(a \mid b, c) = p(a \mid b)$$

"If I know B, then C doesn't tell me about A" $p(a \mid b, c) = p(a \mid b)$ $p(a, b, c) = p(a \mid b, c)p(b, c)$ $= p(a \mid b, c)p(b \mid c)p(c)$ $= p(a \mid b)p(b \mid c)p(c)$

Conditional Independence

- Useful thing to assume when designing models
 - Limit the variables that influence distributions
 - Classical example: Markov assumption
- Questions
 - Does conditional independence imply marginal independence?
 - Does marginal independence imply conditional independence?

Expected Values

$$\mathbb{E}_{p(X=x)} \left[f(x) \right] \doteq \sum_{x \in \mathcal{X}} p(X=x) \times f(x)$$

Some special expectations:

$$p(X = y) = \mathbb{E}_{p(X = x)} [\mathbb{I}_{x = y}]$$
$$H(X) = \mathbb{E}_{p(X = x)} [-\log_2 x]$$

Why Probability?

 Regardless of the purely probability provides us a in the state of the world.

It also helps us make nre

The true probability distribution of something

• What on earth is a *true* probability distribution of anything?

- What do we mean by *sampling*?
- What is generation?

The notion of a model

- A model for a probability distribution is a distribution that approximates the "true" distribution of an RV according to some metric
- Models are typically parameterized

The notion of parmetrization

A parameterization c distribution is a set c sufficient to compute P(X) probabilities 500 veruth

Sampling Notation

Categorical (Multinomial) Distributions

- Generalized model of a die to k dimensions
- Option 1: Parameters lie on the *k*-simplex

Log-linear Parameterization

Assumption: Z converges

Categorical (Multinomial) Distributions

- "Naïve" parameterization
 - k outcomes, k(-1) independent parameters
 - Model as tables of (conditional) probabilities

- Log-linear parameterization
 - k outcomes, n, possibly overlapping parameters
 - •
 - •

Modelling, inference and conditional independence

- Probabilistic inference usually req probability
 - P(X|A,
 - Or equivalently a joint probability
 P(A, B,
 We will often make model assumption

Locally Normalized Models

- Each conditional term is a probability distribution by itself
 - It is *locally normalized*
 - Although the actual model for the distribution may vary

Parameterization

- For each node in the graph
 - We have a multinomial distribution
 - We can use independent parameters (on simplex)
 - We can use log-linear models
 - "Locally normalized model" (cf. Appendix D.2)
 - Z is "local" to the decision being made

Globally Normalized Models

• Extension of the exponential parameterization to structured output spaces

Conditional Random Fields

$$p(\mathbf{y} \mid \mathbf{x}) = \frac{\exp \mathbf{w}^{\top} \mathbf{F}(\mathbf{x})}{Z(\mathbf{x})}$$
$$Z(\mathbf{x}) = \sum_{\mathbf{y}' \in \mathcal{Y}_{\mathbf{x}}} \exp \mathbf{w}^{\top} \mathbf{F}(\mathbf{x})$$

Conditional Random Fields ez ר__ו__∖ $Z(\mathbf{x}) =$ Decoding is nice: *

.

 $= \operatorname{argmax} e$

= argmax

Conditional Random Fields

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = \sum_{C \in G} \mathbf{f}(C)$$

Comparison of Feature-Based Models

- Locally Normalized Models
 - Good joint models
 - Easy to train
 - Downside: decoding can be expensive
- Globally Normalized Models
 - Very popular conditional models (CRFs)
 - Challenge: computing Z / training
 - Advantage: decoding can be cheap