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Probability Outline

* Why probability?
e Probability review
 Multinomials vs. exponential parameterization

e Locally vs. globally normalized models &
partition functions

 Examples



Defining Probability

 What is “probability™?



Defining Probability

 You roll a six-sided dice. What 1s the
probability that you will get a 67
— Why?

 What is the probability that you will get a A in
this course?
— Why?

* Winter temperatures in Pittsburgh have fallen
below OoF 1n 143 of the past 1000 years. What



Defining Probability

* Probability of 6 1n the roll of a six-sided dice

— Classical Definition: Ratio of number of

“favorable” outcomes to total outcomes

e Probability that you will get a A 1n this course
— Beliet

* Winter temps in Pitt have hit < OoF 1n 143 of
the past 1000 years. Probability that 1t will hat
< QoF this year



Defining Probability

* A numerical way of specifying a belief that a
particular experiment will have one of a set of
outcomes

— The set of outcomes 1s called an event

* The belief may be based on a variety of criteria

— Total number of outcomes
— Pure belief

— Past experience



Defining Probability

 What is “probability™?
* No real meaning

e Best understood as a measure computed over a
set

e But what 1s 1n this set?
— “Outcomes’...



Definitions

 Experiment: A single run of the process we
are trying to characterize
— E.g. Toss of a coin
— E.g. Roll of a dice
— E.g. Producing a sequence of words

— E.g. Car driving down Forbes Ave

e Outcome: A result from this process

— Heads vs. tails

— Outcome 1 through 6



Outcomes and Events

* QOutcome: A single result o

— Typically represented by an

— Qutcomes must be

* Mutually exclusive (any pari
not happen)

* Collectively exhaustive: Th
specified as one of the outc



Outcomes, Events, and Sample
Space

. . e

Outcomes



Outcomes, Events, and Sample

Outcomes



Axiomatic definition of probability

* From Kolmogorov..

* Probability is a measure over tl
following properties

1. The probability of an event |
VE P(E) €1

2. The probability of the entire
DO



Outcomes, Events, and Sample
Space

>

Assumes the number

of possible outcomes
is finite/countable

e “Discrete” sample spaces: Number of ways in
which we can define events 1s finite or

countable.



Definition: Probability
distribution

"o LetEq E,, ... be a set of events

— The events are disjoint
Ei N E] — ([)(nu
— The events cover the sample ¢

e
l



Outcomes, Events, and Sample
Space

' Qo
o

 Definingindividual outcomes as e
- E; ={w;}



Notation (don’t blame me)

e Introducing some (b:

* For Ei — {(l)i}; notat
elementary events a

f(w;)



Probabilities over outcomes

Probability mass function

An event 1s a subset (maybe one element)
of the sample space, F C

P(EY=)> f ,.



Random Variable

* A random variable is a function that maps the
sample space onto the real line

— Can only use some portion of the real line



Random Variable

7 i

e A random variable is a functior
the real line

— Can only use some portion of



Random Variable

* A random variable that maps the sample space
onto a discrete set of points on the real line 1s
called a discrete Random Variable

— You can compose the discrete RVs even if the
sample space 1s not discrete!!



Random Variable

ﬂﬂﬂﬂﬂﬂ

e For a discrete sample space, the RV must
necessarily be discrete

— But a discrete RV does not imply a discrete sample

space

Y 41 © A ) | n e (g | * 41 e



Discrete Random Variable

10,1}

e/ {12345}

e For a discrete sample space, the RV must
necessarily be discrete

— But a discrete RV does not imply a discrete sample
space



Notation

D (A — Dar~ 1

ﬂﬂﬂﬂﬂ

. Py (x) is the probabili
variable X takes the v



Notation

‘ | E- | ‘f" "\‘ "'" >
. Py (y) is the probabili
variable Y takes the v



Discrete Random Variable

{0,1}
For a “fair” 1
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A different RV from the dice
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For a “fair”
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A different RV from the dice

_________________________

For a “fair”
dice



Joint RVs

* When we produce multiple RVs from the same
sample space..



Joint RVs

height

age

* When we produce multiple RVs from the same
sample space..



Joint RVs

height

age

e We can even mix discrete and continuous RVs



Joint RVs

Word sequences..

POS sequences

Parse trees

* When we produce multiple RVs from the same
sample space..



No need for RVs..

Word sequences..
POS sequences
Parse trees

Ve

* For discrete sample spaces we will often

dispense with the entire business of RVs and

deal directly with events 1n the sample space

— Each RV 1s just a different way of creating a cover

nf axranto nyrar tha camnla cnara



Joint RVs

‘. \ T N B B R A
N D D D D D D B

~ Word sequences

POS sequences

 Each value of each (discrete) RV re

— Each RV represents a different “d

* Thejoint RV is combination of eve



Joint Probability

e Probability over multiple event types

e Tool for reasoning about dependent
(correlated) events

A joint probability distribution is a probability
distribution over joint r.v.’s with the following form:

£ xXr
E pz<|:y:|>—1 /)2(|:y:|>_0 Vre X,ye)y



Joint Probability

e Probability over multiple event types

e Tool for reasoning about dependent
(correlated) events

A joint probability distribution is a probability
distribution over joint r.v.’s with the following form:

X(w T Words
/= )
[Y(W)j;\*““ﬂ\* Tag

S

£ xXr
E pz<|:y:|>—1 /)2(|:y:|>_0 Vre X,ye)y



Joint Probability

e Probability over multiple event types

e Tool for reasoning about dependent
(correlated) events

A joint probability distribution is a probability
distribution over r.v.’s with the following form:

B X(w)"-“ﬁﬁ Words
- [Y<w>‘i\**~

T Trees

£r 4
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Joint Probability

e Probability over multiple event types

e Tool for reasoning about dependent
(correlated) events

A joint probability distribution is a probability
distribution over r.v.’s with the following form:

7 _ [X(w)**** DNA

Y (w )?\ sequence
i — Proteins
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Marginal probability

" Given a joint RV (X, |
probabilities of the ¢
marginal probability



Marginal Probability
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Marginal Probability

Sample space

)

, quickly)



Marginal Probability

Sample space

(JJ, fuzzy)

(VB, book)
e(RB, quickly)

p(t = NN)



Marginal Probability

Sample space

)

, quickly)

p(w = book)



Marginal Probability

Sample space

)

, quickly)



Marginal Probabilities

* In a joint model of word and tag sequences

p(w.,t)

— The pro

— The pro

DA
DA

— The pro

DA

b1
b1

b1

ity of a word sequence p(w)
ity of a tag sequence p(t)

1ty of a word sequence with the word

“cat” somewhere 1n it

— The probability of a tag sequence containing three
verbs 1in a row



Conditional probability

 (Conditioning events are events th

— Theyrepresentisolated worlds tt
sample space

Tl‘\f\ s MAA (“\MI"\'I\ ‘all aSaWala ;t“ +l‘\f\ 'afala’



Conditional probability of events
T

l V4
* P(R|E) =the probab
scaled by the inverse



Conditional probability of events

|

Ve

P(R|E)P(E
PX,Y(x' y) —



Conditional Probability

The conditional probability is defined as follows:

p(X =x,Y =y joint probability
p(X:a:\Y:y):p( .. y):J I )

p(Y =y) marginal

This assumes p(Y = y) # 0

We can construct joint probability distributions out of
conditional distributions:

p(x | y)p(y) = p(x,y) = py | ©)p(x)



Conditional Probability
Distributions

The conditional probability distribution of a variable
X given a variable Y has the following properties:

Vyey, zp(X:x|Y:y):1

reX



Conditional Probability

Sample space

)

, quickly)



Conditional Probability

Sample space

~

..(NN7 Cat) ‘(JJ, fUZZY)
o *(NN, sloth ).
( N) bOOk)’ (VB7 bOOk)

»(RB, quickly)

p(- | w = book)



Conditional Probabilities

e In a joint model of word and tag sequences
p(w.t)

— The probability of a tag sequence given a word
sequence p(t | w)

— The probability of a word sequence given a tag
sequence p(w | t)



Joint and Marginal Probabilities

* In a joint model of word and tag sequences

p(w,t)

— The probability that the 3rd tag 1s VERB, given
w = “Time flies like an arrow”
p(t3 = VERBI w = Time flies like an arrow)

— The probability that the 3rd word is like, given

w = “Time flies an arrow”, 13 = VIR
p(t3 = like | w = Time flies an arrow | MAD@LIBS
t3 = VERB) N —




Conditional probablllty of events

P(R|E)P(E




Chain Rule

pla,b,c,d,...) =p(a)x

=
>

a) X
a,b)x
p(d | a,b,c)x

=
o
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(
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Conditional probability of events
T
I

Ve

P(R|E)P(E) = P(R



Bayes Rule

P(x|y) =

 p WAV U N



Bayes Rule

Posterior Likelihood

\ \ Prior

ply | x)p(x) ([ plyl|z)p(x)
pla p(y) <_ > Py ﬂ?’)p(af’)>

K

Evidence




Independence
Two r.v.’s are independent iff
p(X =2,Y =y)=p(X =2) X p(Y =y)
Equivalently (prove with def. of cond. prob.)
p(X =z|Y =y)=pX =)

Alternatively,

p(Y =y | X =x)=pY =y)



Conditional Independence

Two equivalent statements of conditional independence:

p(a,c|b) =pla|b)p(c|b)
p(a | ba C) :p(a | b)

“If I know B, then C doesn’t tell me about
o pla]be)=pla]d)
p(a,b,c) =p(a|b,c)p(b,c)

=p(a | bre)p(b | ¢)p(c)

and:




Conditional Independence

Two equivalent statements of conditional independence:

p(a,c|b) =pla|b)p(c|b)
p(a | ba C) :p(a | b)

“If I know B, then C doesn’t tell me about
A pla|b,c) =plalb)

p(a,b,c) = p(a | b, c)p(b,c)
b-e)p(b | c)p(c)
b)p(b | c)p(c)

and:
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Conditional Independence

e Usetul thing to assume when designing models
— Limit the variables that influence distributions
— Classical example: Markov assumption

e Questions

— Does conditional independence imply marginal
independence?

— Does marginal independence imply conditional
independence?



Expected Values

Ep(X :c) Z p

reX

Some special expectations:

p(X — y) = By (x=2) [Hw:y]
H(X) — {‘p(X::C) [— 10g2 ZU}




Why Probability?

Regardless of the purely
probability provides us a
in the state of the world.

I+ alecn halnc 11c malke nro



The true probability distribution

of something

 What on earth 1s a true probability distribution
of anything?

* What do we mean by sampling?
e What is generation?



The notion of a model

* A model for a probability distribution 1s a
distribution that approximates the “true”
distribution of an RV according to some metric

 Models are typically parameterized

[)i ’ ) 3\
PlX)= 2 PUEIN(X 0,0, = 2 ﬁ‘—'cxp(-— OSX =1, )0 (X-u, |)
! ¥ J(2r) |0, ' '



The notion of parmetrization

. A parameterization c
distribution is a set c
sufficient to comput

probabilities-over-th



Sampling Notation

Y ~ Distribution(?)
[ Distribution

Random variable Parameter



Categorical (Multinomial)

Distributions
e Generalized model of a die to k dimensions
e Option 1: Parameters lie on the k-simplex

k
Ak = {(013927---:911') ‘ Z()l =1AN0;, >0V 1€ [O,k]
=1 103

+(0,0,1)

(0,1,0) 65

|



Log-linear Parameterization

Weight vector Feature vector function

\ /

_expw ' f(x)
p(x) = Z

where Z = Z exp w f(LE)
r'eX

Assumption: Z
converges



Categorical (Multinomial)

Distributions

e “Naive” parameterization
— k outcomes, k(-1) independent parameters
— Model as tables of (conditional) probabilities

e og-linear parameterization
— k outcomes, n, possibly overlapping parameters



Modelling, inference and
conditional independence

Probabilistic inference usually reqg
probability
P(X|A,
Or equivalently a joint probability
P(A, B,
We will often make modellg\ssu}n|




Locally Normalized Models

N
_—

e Each conditional term 1s a probability
distribution by itself
— It 1s locally normalized

— Although the actual model for the distribution may

vary



Parameterization

e For each node in the graph
— We have a multinomial distribution
— We can use independent parameters (on simplex)

— We can use log-linear models
e “Locally normalized model” (ct. Appendix D.2)
e 7 1s “local” to the decision being made



Globally Normalized Models

e Extension of the exponential parameterization
to structured output spaces

expw ' F(x)

A
where Z = Z expw ' F(x)
x'eX

p(x) =



Conditional Random Fields




Conditional Random Fields

.
N7 _1__\ el

7(Y\= Y‘l

Decoding is
nice:

-_— . l —— R ae— e . a— ——  w— —

— dremaxe
— AdIromax



Conditional Random Fields




Comparison of Feature-Based

Models
e Locally Normalized Models

— Good joint models
— Easy to train
— Downside: decoding can be expensive

e Globally Normalized Models

— Very popular conditional models (CRFs)
— Challenge: computing Z / training
— Advantage: decoding can be cheap



