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Problem: Extracting meaning or
intent from natural language..

• Whole Foods Raises Prices For Suppliers
 
• What happened?
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Meaning from natural language..
• Asteroid Skimming Past Earth May Loom

Larger Than Exploding Russian Meteor
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self-driving-car technology
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• Sentences are composed of groups of words

that carry key elements of their meaning
– Changing these groups will locally modify the

meaning..



Can be reordered
• The champions of banana will eat a banana eat a banana

piepie to determine who’s a better chimpanzeeto determine who’s a better chimpanzee
in a friendly faceoff
– The champions of banana will eat a banana pie to

determine who’s a better chimpanzee in a friendly
faceoff

 

• Whole foods raises prices for suppliers
– For suppliers whole foods raises prices



Grouping the words differently
can change meaning

• Spare him not kill him
 
 
 
• Spare him not kill him



Though regrouping may
sometimes permit Yoda..

• The champions of banana will eat a banana eat a banana
piepie in a friendly faceoff to determine who’sto determine who’s
a better chimpanzeea better chimpanzee

 

• To determine who’s a better To determine who’s a better chimpanzee chimpanzee in a
friendly faceoff  eat a banana pie eat a banana pie the
champions of banana will



Contiguity
• The groups are (generally) continguous

– The champions of banana will eat a banana pie eat a banana pie
in a friendly faceoff to determine who’s a betterto determine who’s a better
chimpanzeechimpanzee

• The groups often have subgroups
– The champions of banana will eat a banana pie eat a banana pie

in a friendly faceoff to determine who’s a betterto determine who’s a better
chimpanzeechimpanzee

• But splitting and redistributing the segments
can change the meaning (if the result is

    

  



• The theory that sentences in a language have
recursive block structure is ~2500 years old!
– Pāṇini
 
 
 
– An essential property of these block structures is

that logical units never overlap
• i.e. each block is contiguous

– Although subblocks may be reordered within a block

Meaning from natural language..



Constituents
• The champions of banana will eat a banana eat a banana

piepie in a friendly faceoff to determine who’sto determine who’s
a better chimpanzeea better chimpanzee

 

• We will call these word groups constituentconstituent
phrasesphrases of the sentence
– Constituents may have constituents..



Constituents and parts of speech
• The champions of banana will eat a banana eat a banana

piepie in a friendly faceoff to determine who’sto determine who’s
a better chimpanzeea better chimpanzee

• Constituent phrases will typically act as parts
of speech
– E.g.:  The champions of banana:  Looks like a

noun
– E.g.:  will eat a banana : Looks like a verb



Recap:  Parts of speech
• Noun: Names of persons, places, things,

feelings etc
– John, cat, car, happiness

• Pronoun: Stands for a noun
– I, you, we

• Verb:  Words that represent action or doing
– Go, buy, be

• Adjectives: Modifiers for nounnoun
– Tall, fast, happy



Penn Treebank (Marcus et al.,
1993)

• A million words (40K sentences) of Wall Street
Journal text (late 1980s).
– This is important to remember!

• Parsed by experts; consensus parse for each
sentence was published.

• Attempts to be theory-neutral, probably more
accurate to say that it represents its own
syntactic theory.

• Many other treebanks now available in other



According to the Penn Tree Bank
1. CC    Coordinating

conjunction
2. CD    Cardinal

number
3. DT    Determiner
4. EX    Existential

there
5. FW    Foreign word
6. IN    Preposition or

subordinating
conjunction

1. PRP$   Possessive
pronoun

2. RB    Adverb
3. RBR    Adverb,

comparative
4. RBS    Adverb,

superlative
5. RP    Particle
6. SYM    Symbol
7. TO    to



Constituents and parts of speech
• Constituent phrases will typically act as parts

of speech
– E.g.:  The champions of banana:  Looks like a

noun
– E.g.:  will eat a banana : Looks like a verb

 

• Phrases take the characteristics of the head
word
– The word that governs the meaning
– We label the phrase by the POS category of the



Or More Correctly
• Constituent phrases have constituent phrases

– “The championschampions of banana”:  Noun phrase
– “will eateat banana pie in a friendly face off to

determine who’s a better chimpanzee”: Verb
phrase

– Note: Simply focusing on the main two terms
gives you most of the meaning

 

• Sub-phrases
– (NP



Challenge

• How to segment the text
– How to find the constituent phrases
– Needed, to interpret it
 

• To do so, we will first describe a grammar for
the language

• But first.. lets formally define language



What is a formal language
•  



Formal Grammar
•  



“Recognizing” a language
•  



The Chomsky Hierarchy of
Language

The Chomsky hierarchy of languages.  Each language type is characterized by the
type of grammar required to construct it
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Regular language
•  



Regular language
•  All strings produced by a regular

grammar can be viewed as begin
obtained by incremental extension
of substrings by one symbol at
a time
 
Even if the grammar originally
specified increments in blocks of
symbols with more complex rules,
it can be redefined as an equivalent
grammar based on incremental
one-symbol extensions
 
If such redefinition is not possible,
the grammar is not regular



Regular language examples
• Regexps
• Restricted sets of commands, poetry..
 
 
 
• Or even fairly complex structure

– Can even produce all possible word sequences for
a fixed vocabulary

• But not “selective” enough for proper natural language

 



Regular Languages

• Regular languages can be recognized by finite-
state automatons
– A machine with a finite number of states, including

some “terminal” states
– Transitions from one state to another by

“consuming” a symbol

DF
A

NDF
A



The Chomsky Hierarchy of
Language

The Chomsky hierarchy of languages.  Each language type is characterized by the
type of grammar required to construct it



CFG
•  



CFGs are not (necessarily) finite
state

•  



CFGs are not (necessarily) finite
state

•  

Is this Markov?



The Chomsky Normal Form
•  



Examples of languages produced
by a CFG

• Programming languages
– Every open loop must be closed

• Regardless of size of program within the loop
– Which may itself have loops

– Parentheses must be closed
 
• Natural language?



The Chomsky Hierarchy of
Language

The Chomsky hierarchy of languages.  Each language type is characterized by the
type of grammar required to construct it



Context-sensitive and higher
grammars

• Context-sensitive grammar: Production rules
depend on context

• Recursively-enumerable grammar: Any
grammar that can be recognized by a Turing
machine

 

• Actual unlimited natural language is not well
modeled even by recursively enumerable
grammar according to Chomsky



Typical uses of language
• Check if a given string belongs to a language

– Can this have been produced by language X
– Recognition (regexp)
– Verification (computer programs)
 

• Guess how it was produced
– Determine its structure

• Parsing



Returning to our problem
• The champions of banana will eat a banana eat a banana

piepie in a friendly faceoff to determine who’sto determine who’s
a better chimpanzeea better chimpanzee

 
• How do we identify the constituent phrases?



Natural language can be modeled
by  a CFG

• Grammatically spoken/written language largely
follows a CFG structure
– Natural spoken language doesn’t, but parts of it

nevertheless do
 

• Model the language with a CFG
• Determine the constituents of any sentence by

parsing it with a CFG
– Its not perfect it’s a model



An example of a CFG
•  

 
 

 

 

 

 



An example of a CFG
•  

 
 

 

 

 

 

Note:  a non-terminal may be expanded by multiple production rules.
          a terminal may appear against multiple non-terminals.



Simplified

•  

 
 

 

 

 

 



Finding the constituents
• The man read this book

S (The man read this book)
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Finding the constituents
• The man read this book

S (The man read this book)

NP (The
man)
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Each node represents a constituent



Finding the constituents

• There are multiple rules expanding S.   How
did we know which one to apply?
– In general there may be many production rules for

any non-terminal. How do we know which one to
apply?

• The man read this book

S (The man read this book)

NP (The
man)

VP (read this
book)



Finding the constituents

• Finding the right combination to compose the
sentence is a challenging search problem
– The problem of parsingparsing

• But wait… it gets tougher..But wait… it gets tougher..

Trout in the brook?

Saw the fat?

The little bear saw?



Parses are not unique

 

 

• Parses can be ambiguous
– Grammars can be ambiguous

• Admit multiple parses

– English is an ambiguous language

• Which one do we choose?



 

Problem: Production rules are not
prioritized

 •  



 

Disambiguating: Attempt 1

 •  



 

Disambiguating: Attempt 1

 •  



 

Disambiguating: Attempt 2

•  

 
  

    



Probabilistic Context Free
Grammar

 

 

•  



Probabilistic Context-Free
Grammar

•  



Discrete time branching process
• Structure as the result of a discrete time

branching process
– Start in a known initial state, carry out stochastic

steps (parameterized using multinomials) until
some termination condition is met

– Steps are (conditionally) independent of one
another: probabilities multiply

– Total probability is the probability of the steps



S
1.0



S

N
P

V
P

1.0 x p(NP VP |
S)
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N
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V

1.0 x p(NP VP |
S)
x p(JJ NN | NP)
x p(V | VP)
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N
P

V
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J
J

N
N

V

angry

1.0 x p(NP VP |
S)
x p(JJ NN | NP)
x p(V | VP)
x p(angry | JJ)



S

N
P

V
P

J
J

N
N

V

angry dogs

1.0 x p(NP VP |
S)
x p(JJ NN | NP)
x p(V | VP)
x p(angry | JJ)
x p(dogs | NN)



S

N
P

V
P

1.0 x p(NP VP | S)
x p(JJ NN | NP)
x p(V | VP)
x p(angry | JJ)
x p(dogs | NN)
x p(bark | V)
 

J
J

N
N

V

angry dogs bark



Probabilistic Context Free
Grammar

 

 

•  



HMMs are Special PCFGs
• (Actually HMMs are special PFSGs)
• Alphabet Σ
• N = HMM states Q
• Start state q0
• Rules

q → x q’ with probability pemit(x | q) ptrans(q’ | q)
q → ε with probability ptrans(stop | q)



Weighted Context Free Grammar

 

 

•  



Weighted Context-Free Grammar
• Don’t need a generative story; just assign

weights to rules.



But where do the parse trees
themselves come from?

• How to hypothesize a parse tree for a sentence,
given a CFG (or PCFG or WCFG)?
– There are an exponentially large number

He    looked   at   the  dog   with  one  eye

An arbitrarily drawn tree
Is there an arrangement of rules that fits this?



Parsing

• Consider every possible tree over the words
• Unambiguous grammar:

– One of these trees aligns with the grammar

• Ambiguous grammar:
– Find a tree that aligns with the grammar

He    looked   at   the  dog   with  one  eyeHe    looked   at   the  dog   with  one  eye



Some parsing algorithms
• CYK parser

– (J. Cocke ‘70, D. Younger ‘67, T. Kasami ‘65)
• Earley’s parser
 



CYK parser: Unambiguous CFGs
• Explores every possible tree, but does so with a

dynamic program
• To keep computation down, works only with

CNF grammars
– Recall that every CFG can be rewritten as a CNF
– Result of CNF formalism:  Every node a tree must

connect with either a node to the immediate left or
the immediate right

– Result of contiguity constraint in grammar: Every
node must represent the entire sequence of words
below it



CYK : Unambiguous CFGs

• Given a grammar and a word sequence
w1…wN:

• Construct this triangle (number of rows =
number of words).
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CYK : Unambiguous CFGs

• Given a grammar and a word sequence
w1…wN:

• Construct this triangle (number of rows =
number of words).
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Every possible tree
can be represented
within this grid

Every tree can be drawn
using only vertical lines and
lines tilted left 45o

Every “node” merges exactly
two lines (CNF grammar)

Every “node” spans all
words in the triangle
below it



CYK : Unambiguous CFGs

• For each word in the first row, find all
production rules that can produce it.
– Store (pointers to) all in the corresponding block
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CYK : Unambiguous CFGs

• For each block in the next row, find all rules that
produce any combination of the non-terminals
immediately below it
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CYK : Unambiguous CFGs

• For each higher row in sequence
– For each block

• For each pair of lower nodes that can span the entire
section of words represented by the block

– Identify any rules that produce any combination of NTs for the
pair
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CYK : Unambiguous CFGs

• For each higher row in sequence
– For each block

• For each pair of lower nodes that can span the entire
section of words represented by the block

– Identify any rules that produce any combination of NTs for the
pair
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CYK : Unambiguous CFGs

• For each higher row in sequence
– For each block

• For each pair of lower nodes that can span the entire
section of words represented by the block

– Identify any rules that produce any combination of NTs for the
pair
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CYK : Unambiguous CFGs

• For each higher row in sequence
– For each block

• For each pair of lower nodes that can span the entire
section of words represented by the block

– Identify any rules that produce any combination of NTs for the
pair
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CYK : Unambiguous CFGs

• For each higher row in sequence
– For each block

• For each pair of lower nodes that can span the entire
section of words represented by the block

– Identify any rules that produce any combination of NTs for the
pair
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CYK : Unambiguous CFGs

• If, eventually, the top box is populated, the
string belongs to the language
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CYK example

• From slides I found on a UC Davis website

 

     

    

   

  

 

b a a b a



CYK example

• From slides I found on a UC Davis website
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CYK example

• From slides I found on the UC Davis website
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CYK example

• From slides I found on the UC Davis website
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CYK example

• Possible productions:    B A,   B C
• We find two rules for this
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CYK example

• Possible productions:    B A,   B C
• We find two rules for this
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CYK example

• Possible productions:    A A,   A C, C A, C C
• One rule
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CYK example

• Possible productions:    A A,   A C, C A, C C
• One rule

 

     

    

   

  

 

b a a b a
B A,

C
A,
C

A,
C

B

S,
A

B



CYK example

• Possible productions:    A B,   C B
• Two rules (note both produce A B)
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CYK example

• Possible productions:    A B,   C B
• Two rules (note both produce A B)
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CYK example

• Possible productions:    B A,   B C
• Two rules
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CYK example

• Two combinations that work
• Possible productions:  

– B B
– S A,  S C,  A A,  A C
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CYK example

• Two combinations that work
• Possible productions:  

– B B
– S A,  S C,  A A,  A C
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CYK example

• Possible productions:  
– AS,  AC,  CS, CC
– B B
– Only one rule
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CYK example

• Possible productions:  
– AS,  AC,  CS, CC
– B B
– Only one rule
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CYK example

• Possible productions:  
– AS,  AA, CS, CA
– SA, SC, CA, CC
– Only one rule
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CYK example

• Possible productions:  
– AS,  AA, CS, CA
– SA, SC, CA, CC
– Only one rule
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CYK example

• Possible productions:  
– SS, SC, AS, AC
– BB
– No rule for any of these
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CYK example

• Possible productions:  
– SS, SC, AS, AC
– BB
– No rule for any of these
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CYK example

• Possible productions:  
– AB, CB
– BS,  BA
– BA, BC
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CYK example

• Possible productions:  
– AB, CB
– BS,  BA
– BA, BC
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CYK example

• Possible productions:  
– AB, CB
– BS,  BA
– BA, BC
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CYK example

• Possible productions:  
– AB, CB
– BS,  BA
– BA, BC

 

     

    

   

  

 

b a a b a
B A,

C
A,
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A,
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B

S,
A

B S,
C

S,
A

B B

S, A,
C

IS THIS PARSE UNAMBIGUOUS?

Possibly not… (can’t be sure yet)



CYK example

• Possible productions:  
– BS, BA, BC
– SB, AB
– Three rules apply!
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CYK example

• Check: Does the top box have S
– Remove other entries
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B B

S, A,
C

S

String does belong to the language



But how to find constituents?
• Need the parse tree for this
 
• At each box,

– For each stored NT
• keep track of not just the non-terminals, but the child

nodes

• Forward trace from root to find the parse tree
– The parse tree provides the constituents



CYK example

• Resulting parse
– Constituents can be found from it

• Tracing the parse tree is possible because this is an
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CYK example

•  
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CYK example

• Possible productions:  
– BS, BA, BC
– SB, AB

• Multiple S rules apply
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C
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S, A,
C

S

Not an unambiguous parse!

Many possible parses

 

How do we choose the best parse?



CYK with PCFG

• Rules now have probabilities
– Note, probabilities of all expansions of any

specific NT sum to 1.0
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CYK example

• Keep track of probabilities of rules applied
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B
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CYK example

• For each new rule inserted in table, multiply
the probability of the rule by the probability of
its children
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CYK example

• For each new rule inserted in table, multiply
the probability of the rule by the probability of
its children

     

    

   

  

 

b a a b a

S 0.125, A
0,125

B
0.5

A 0.5,C
0.5

A 0.5,C
0.5

A 0.5,C
0.5

B
0.5
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S 0.125, A
0,125



CYK example

• For each new rule inserted in table, multiply
the probability of the rule by the probability of
its children
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b a a b a

S 0.125, A
0,125

B
0.5
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A 0.5,C
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CYK example

• For each new rule inserted in table, multiply
the probability of the rule by the probability of
its children
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b a a b a

S 0.125, A
0,125

B
0.5

A 0.5,C
0.5

A 0.5,C
0.5

A 0.5,C
0.5

B
0.5
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CYK example

• When a rule has two or more possible productions,
pick the most probable one
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P = 0.5*1/64 (S-
>BA)
P = 0.3*1/64 (S-
>AB)



CYK example

• When a rule has two or more possible productions,
pick the most probable one
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CYK example

• When a rule has two or more possible productions,
pick the most probable one
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CYK example

• When a rule has two or more possible productions,
pick the most probable one
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CYK example

• Note:  Competition happens only between
different expansions of the same non-terminal
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CYK example

• When a rule has two or more possible productions,
pick the most probable one
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CYK example

• The same algorithm also applies to weighted
PCFGs
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CYK example

• What is the cost of parsing a string of N words
with R rules?
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CYK, PCFG and Structured
prediction..

• The task we just performed..
 

• Assigning probabilities to entries from a very
large set
– Modelled a probability distribution over all

possible parse trees
– Selected the most probable parse
– (How would you find the second most possible?)

• Structured prediction
 



Parsing CFGs

• The CYK parser is actually very expensive and
inefficient
– Nobody really uses it anymore except for very

simple task
 

• A more efficient method is the Earley parser
– Jay Earley, 1968, CMU

• Then he gave it all up and became a shrink investigating
his “inner critic”..

– It’s a very complicated looking algorithm



CYK vs Earley
• CYK: Bottom up

– Build all possible* trees that can be built from the
word sequence

– Find which conforms to grammar
– *Check conformance to grammar while building

trees on words, to keep restrict computation
 

• Earley: Top down
– Build all possible* trees that can be produced by

grammar



Earley example

• We will maintain a list of partially expanded rules
at each of the shown locations
– We will go left to right
– If any fully expanded rule gets to the final list, we

b a a b a

      

 



Earley example

• The star indicates the position until which we’ve
successfully built a constituent

b a a b a

      

 
 
 

 



Earley example

• The first symbols are A and B. Expand them
– Include all possible expansions of A and B in one pass

b a a b a

      

 
 
 
 
 
 
 

 

“predict”



Earley example

• We now have a new non-terminal C. Expand it
– Don’t revisit already-expanded NTs or you’ll have an

infinite loop

b a a b a

      

 
 
 
 
 
 
 
 
 

 

“predict”



Earley example

• Only one of the terminal-producing rules is valid
for the upcoming symbol (b)
– Retain it and its predecessors.  Kill all the rest

• Predecessors are rules which have “B” in the first place on

b a a b a

      

 
 
 
 
 
 
 
 
 

 



Earley example

• Only one of the terminal-producing rules is valid
for the upcoming symbol (b)
– Retain it and its parents.  Kill all the rest

• Parents are rules which have “B” in the first place on the

b a a b a

 

     

 
 
 
 

 



Earley example

• Can also kill orphaned rules that don’t lead to “S”

b a a b a

 

     

 
 
 
 

 



Earley example

• Can also kill orphaned rules that don’t lead to “S”

b a a b a

 

     

 
 
 

 



Earley example

• “Scan” the “b”:  Move the terminal rules that
produce b over to the second column
– Move the star to show “b” is consumed

b a a b a
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“complete”



Earley example

• Recursively expand the first NT in each of the
rules until we get to terminals
– “Scan” their expansions to determine if any of them

can consume the following “a”

b a a b a
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“predict”



Earley example

• Recursively expand the first NT in each of the
rules until we get to terminals
– “Scan” their expansions to determine if any of them

b a a b a

     

 
 
 

 
 
 
 

 
 
 
 

 



Earley example

• Move the rules that can produce the “a” and their
parents to the next column
– Move the *

b a a b a
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“complete”



Earley example

•  

b a a b a

    

 
 

 
  

 
 
 
 

 

 
 
 
 

 
 

 



Earley example

•  

b a a b a

    

 
 

 
  

 
 
 
 

 

 
 
 
 

 
 

 

How to disambiguate?



Earley with PCFGs

• How?
 

b a a b a
 

    

 
 

 
 

 

 
 
 

 

 

 
 
 
 

 
 



Evaluation
• Take a sentence from the test set.
• Use your parser to propose a hypothesis parse.
• Treebank gives you the correct parse.
• Precision and recall on labeled (or unlabeled)

constituents.
– Also, average number of crossing brackets

(compared to correct parses) in your hypotheses.
• The training/development/test split has been

held constant for a long time; possibly a cause
for concern.



Parsing in Reality
• Generally speaking, few industrial-strength

parsers actually call CKY or Earley’s.
• Extensions to the basic CFG model (next topic)

make reduction to CFG expensive.
• Standard techniques:

– Beam search
– Agenda-based approximations with pruning and/or

A*
– “Coarse-to-fine”



The problem
• The basic parsers are inefficient

 

• The PCFG structure enables us to
disambiguate, but are nevertheless insufficient
to actually model the language



Examples of ambiguous parses

• From Michael Collins
–  Prepositional attachment ambiguity



Examples of ambiguous parses

• From Michael Collins
– Coordination ambiguity: Identical set of rules

applied, only difference is the order
– Note that here even having probabilistic rules



Solution: Lexicalization
•  



Lexicalized Parse



Natural language is not context
independent..

• But CFGs are easy to handle
• Compromise?
 
• Context free grammar

– But parent-dependent probabilities
– Like an expanded markov state in Markov chains



Parent Parent annotation

• Rules are cloned for different parents
– Parent-specific probability distributions over

expansions
– But the actual rules remain basic CFG rules!



Parent Annotation

NP

NP PP

NP

NP PP
PP

p2 q

NP PP

NP →p NP
PP

NP →q NP PP
PP

… …

… …
…

…

… …



Parent Annotation

NPVP

NPNP PPNP

NPVP

NPNP PPNP
PPNP

pr q

NPNP PPNP

NPVP →p NPNP
PPNP

NPVP →q NPNP
PPNP PPNP

… …

… …
…

…

… …

NPNP →r NPNP
PPNP



Parent Annotation
• Another way to think about it …
 
•     Before:
 
•     Now:
 
• This could conceivably help performance

(weaker independence assumptions)
• This could conceivably hurt performance (data

sparseness)



Parent Annotation
• From Johnson (1998):
•     PCFG from WSJ Treebank:  14,962 rules

• Of those, 1,327 would always be subsumed!

•     After parent annotation:  22,773 rules
• Recall 69.7% -> 79.2%; precision 73.5% -> 80.0%



Head Annotation
• “I love all my children, but one of them is

special.”
 
 
 
 
 

• Heads not in the Treebank.
• Usually people use deterministic head

rules  (Magerman, 1995).

S -> NP
VPVP -> VBD
NP
NP -> DT NNS
PP



Algorithms
• These “decorations” affect our parser’s

runtime.
– Why?
– Any ideas about how to get around this?



Some Famous Parsers

 



Training Parsers In Practice
• Transformations on trees

• Some of these are generally taken to be crucial
• Some are widely debated
• Lately, people have started learning these transformations

• Smoothing is crucial; the grammars that result from
transformed trees have lots more rules and therefore
more parameters.



from Johnson (1998)



Collins Model 1 (1997)
• Trees are headed and lexicalized

– What’s the difference?
 

• Huge number of rules!
 
 
 
• Key:  factor probabilities within rule.

VPsaw → Vsaw NPman
PPthrough

VPsaw → Vsaw NPman
PPwith

VPsaw → Vsaw NPwoman
PPthrough

VPsaw → Vsaw
NPman



Collins Model 1 (1997)
• Everything factors down to rules, then further.

 We’re given the parent nonterminal and head
word.

VPsaw



Collins Model 1 (1997)

VPsaw

Vsaw

• Everything factors down to rules, then further.  We’re given the
parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.



Collins Model 1 (1997)

VPsaw

Vsaw

• Everything factors down to rules, then further.  We’re given the
parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.

Advsomehow



Collins Model 1 (1997)

VPsaw

Vsaw

• Everything factors down to rules, then further.  We’re given the
parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.

Advsomehow



Collins Model 1 (1997)

VPsaw

Vsaw

• Everything factors down to rules, then further.  We’re given the
parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.  

• Then right.

Advsomehow NPcat



Collins Model 1 (1997)

VPsaw

Vsaw

• Everything factors down to rules, then further.  We’re given the
parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.  

• Then right.

Advsomehow NPcat PPwith



Collins Model 1 (1997)

VPsaw

Vsaw

• Everything factors down to rules, then further.  We’re given the
parent nonterminal and head word.

• Randomly generate the head child’s nonterminal.

• Generate a sequence of left children.  

• Then right.

Advsomehow NPcat PPwith



Collins Model 1 (1997)

VPsaw

Vsaw

• Interesting twist:  want to model the distance between head
constituent and child constituent.  How?

Advsomehow NPcat PPwith



Collins Model 1 (1997)

VPsaw

Vsaw

• Interesting twist:  want to model the distance between head
constituent and child constituent.  How?

• Depth-first recursion.

Advsomehow NPcat PPwith

generate these ... ... before this



Collins Model 1 (1997)

VPsaw

Vsaw

• Interesting twist:  want to model the distance between head
constituent and child constituent.  How?

• Depth-first recursion.

• Condition next child on features of the parent’s yield so far.

Advsomehow NPcat PPwith

generate these ... ... before this



Collins Model 1 (1997)
• Interesting twist:  want to model the distance between head

constituent and child constituent.  How?

• Depth-first recursion.

• Condition next child on features of the parent’s yield so far.



Collins Models 2 and 3 (1997)
• Model 2:  Complements, adjuncts and

subcategorization frames
– Treebank decoration:  -C on specifiers and arguments
– Probability model:  first pick set of complements

(side-wise), must ensure they are all generated
– the issue was a bill funding Congress

• Model 3:  Wh-movement and extraction
– Treebank decoration:  “gap feature”
– Probability model:  gap feature “passed around the

tree,” must be “discharged” as a trace element.
– the store that IBM bought last week



Other Points
• Unknown words at test time:  any training

word with count < 6 becomes UNK
• Smoothing:  deleted interpolation
• Tagging is just part of parsing (not a separate

stage)
• Markov order increased in special cases:

– within base noun phrases (NPBs) - first order
– conjunctions (“and”) predicted together with second

conjunct
– punctuation (details in 2003 paper)



Practical Notes
• Collins parser is freely available
• Dan Bikel replicated the Collins parser cleanly

in Java
– Easier to re-train
– Easier to plug-and-play with different options
– Multilingual support
– May be faster (with current Java) - I’m not sure



Charniak	(1997)	-	in	brief

• Generally	similar	to	Collins
• Key	differences:

– Used	an	addi5onal	30	million	words	of	unparsed	text
in	training

– Rules	not	fully	markovized:		pick	full	nonterminal
sequence,	then	lexicalize	each	child	independently



Charniak	(1997)	-	in	brief

VPsaw



Charniak	(1997)	-	in	brief

VPsaw

VsawAdv NP PP

VPsaw → Adv V NP
PP



Charniak	(1997)	-	in	brief

VPsaw

VsawAdvsomehow NP PP

p(somehow | VPsaw,
Adv)



Charniak	(1997)	-	in	brief

VPsaw

VsawAdvsomehow NPcat PP

p(cat | VPsaw,
NP)



Charniak	(1997)	-	in	brief

VPsaw

VsawAdvsomehow NPcat PPwith

p(with | VPsaw,
PP)



Charniak	(2000)

• Uses	grandparents	(Johnson	’98
transforma5on)

• Markovized	children	(like	Collins)

• Bizarre	probability	model:
– Smoothed	es5mates	at	many	backoff	levels

– Mul5ply	them	together

– “Maximum	entropy	inspired”

– Kind	of	a	product	of	experts	(untrained)



Comparison

	 	 labeled	recall labeled
precision

average
crossing
brackets

Collins

Model	1 87.5 87.7 1.09

Model	2 88.1 88.3 1.06

Model	3 88.0 88.3 1.05

Charniak
1997 86.7 86.6 1.20

2000 89.6 89.5 0.88



Klein	and	Manning	(2003)

• By	now,	lexicaliza/on	was	kind	of	controversial
– So	many	probabili/es,	such	expensive	parsing:		is	it

necessary?

• Goal:		reasonable	unlexicalized	baseline
– What	tree	transforma/ons	make	sense?
– Markoviza/on	(what	order?)
– Add	all	kinds	of	informa/on	to	each	node	in	the	treebank

• Performance	close	to	Collins	model,	much	beHer
than	earlier	unlexicalized	models



Markoviza)on

S

NP VP

VB
NP

PPDT

NNS PRP NNS

PN

I
hit

the

cats
on mats

horizontal:		∞
ver:cal:		1

PP

PRP NNS

with bats

VP	→	VB	NP	PP



Markoviza)on

VP

NP

I
hit the

cats on mats

horizontal:		1
ver6cal:		1

PP

with

bats

VP[VB]	→
VB

VP[VB	…	NP]	→
VP[VB]	NP

VP[VB	…	PP]	→	VP[VB	…
NP]	PP

VP[VB	…
PP]

VP[VB	…
NP]

VP[VB]



Markoviza)on

S

VPS

VBVP
NPVP

I
hit

the

cats
on mats

horizontal:		∞
ver7cal:		2

PPVP

with bats

VPS	→	VBVP	NPVP
PPVP



Markoviza)on

• More	ver'cal	Markoviza'on	is	be1er
– Consistent	with	Johnson	(1998)
• Horizontal	1	or	2	beats	0	or	∞
• Used	(2,	2),	but	if	sparse	“back	off”	to	1



Other	Tree	Decora,ons
• Mark	nodes	with	only	1	child	as	UNARY
• Mark	DTs	(determiners),	RBs	(adverbs)	when
they	are	only	children

• Annotate	POS	tags	with	their	parents
• Split	IN	(preposiGons;	6	ways),	AUX,	CC,	%
• NPs:		temporal,	possessive,	base
• VPs	annotated	with	head	tag	(finite	vs.	others)
• DOMINATES-V
• RIGHT-RECURSIVE	NP



Comparison

	 	 labeled
recall

labeled
precision

average
crossing
brackets

Collins

Model	1 87.5 87.7 1.09

Model	2 88.1 88.3 1.06

Model	3 88.0 88.3 1.05

Charniak
1997 86.7 86.6 1.20

2000 89.6 89.5 0.88

K&M 2003 86.3 85.1 1.31


