Natural Language Parsing with
Context-Free Grammars

SPFLODD
Spring 2018

Problem: Extracting meaning or

intent from natural language..
* Whole Foods Raises Prices For Suppliers

 What happened?

Extracting meaning or intent

from natural language..
* Whole Foods Raises Prices{ For Suppliers

 What happened?

Meaning from natural language..

e Asteroid Skimming Past Earth May Loom
Larger Than Exploding Russian Meteor

Meaning from natural language..

e Asteroid Skimming Past Earth May Loom
Larger Than Exploding Russian Meteor

Meaning from natural language..

e Uber and Waymo have reached a $245 million
settlement 1n their massive legal fight over
self-driving-car technology

Meaning from natural language..

e Uber and Waymo have reached a $245
million settlement in their massive legal
fight over self-driving-car technology

Meaning from natural language..

e Uber and Waymo have reached a $245
million settlement in their massive legal
fight over self-driving-car technology

* Sentences are composed of groups of words
that carry key elements of their meaning

— Changing these groups will locally modity the
meaning..

Problem: Extracting meaning or

intent from natural language..

e Uber and Waymo will eat a banana pie in
their massive legal fight over self-driving-
car technology

* Sentences are composed of groups of words
that carry key elements of their meaning

— Changing these groups will locally modity the
meaning..

Problem: Extracting meaning or

intent from natural language..

e Uber and Waymo have eat a banana pie in
their massive legal fight 70 determine who's
a better chimpanzee

* Sentences are composed of groups of words
that carry key elements of their meaning

— Changing these groups will locally modity the
meaning..

Problem: Extracting meaning or

intent from natural language..

e The champions of banana will eat a banana
pie in their massive legal fight 7o determine
who’s a better chimpanzee

* Sentences are composed of groups of words
that carry key elements of their meaning

— Changing these groups will locally modity the
meaning..

Problem: Extracting meaning or

intent from natural language..

e The champions of banana will eat a banana
pie in a friendly faceoff 7o determine who's
a better chimpanzee

* Sentences are composed of groups of words
that carry key elements of their meaning

— Changing these groups will locally modity the
meaning..

Can be reordered

e The champions of banana will eat a banana
pie to determine who's a better chimpanzee
in a friendly faceoff

— The champions of banana will eat a banana pie to
determine who’s a better chimpanzee in a friendly

faceoff

 Whole foods raises prices for suppliers

— For suppliers whole foods raises prices

Grouping the words differently

can change meanin
e Spare him not kill him °

e Spare him not kill him

Though regrouping may
sometimes permit Yoda..
e The champions of banana will eat a banana
pie In a friendly faceoff 7o determine who's

a better chimpanzee

e To determine who’s a better chimpanzee in a
friendly faceoff eat a banana pie the
champions of banana will

Contiguity

e The groups are (generally) continguous

— The champions of banana will eat a banana pie
in a friendly faceoff 7o determine who’s a better

chimpanzee |
e The groups often have subgroups

— The champions of banana will eat a banana pie
in a friendly faceoff 7o determine who’s a better

chimpanzee

* But splitting and redistributing the segments

can chanoe the meanino (if the reqanlt 1<

Meaning from natural language..

* The theory that sentences in a language have
recursive block structure 1s ~2500 years old!

Fw e w W w w W W w W W ww ™ ww wwwwww ww

— Pﬁmnl , 500 g wifIfyPANIN

£+ il

vwwwww
-
i

— An essential property of these block structures is
that logical units never overlap

* 1.e. each block 1s contiguous
— Although subblocks may be reordered within a block

Constituents

e The champions of banana will eat a banana
pie In a friendly faceoff 7o determine who's

a better chimpanzee

 We will call these word groups constituent
phrases of the sentence

— Constituents may have constituents..

Constituents and parts of speech

e The champions of banana will eat a banana
pie In a friendly faceoff 7o determine who's

a better chimpanzee

e Constituent phrases will typically act as parts
of speech

— E.g.: The champions of banana: Looks like a

noun

— E.g.: will eat a banana : Looks like a verb

Recap: Parts of speech

 Noun: Names of persons, places, things,
feelings etc
— John, cat, car, happiness

e Pronoun: Stands for a noun
— 1, you, we

e Verb: Words that represent action or doing
— Go, buy, be

e Adjectives: Modifiers for noun

— Tall, fast, happy

Penn Treebank (Marcus et al.,
1993)

A million words (40K sentences) of Wall Street
Journal text (late 1980s).

— This 1s important to remember!

e Parsed by experts; consensus parse for each

sentence was published.

e Attempts to be theory-neutral, probably more
accurate to say that 1t represents its own

syntactic theory.

e \NManvy nthar traahanlc naws avvailalhla 1n athar

According to the Penn Tree Bank

1. CC Coordinatingl . PRP$ Possessive

conjunction pronoun

2. CD Cardinal 2. RB Adverb
number 3. RBR Adverb,

3. DT Determiner comparative

4. EX Existential 4. RBS Adverb,
there superlative

J. FW Foreign word. RP Particle

0. IN Preposition ob. SYM Symbol
subordinating 7 TO to

Constituents and parts of speech

* Constituent phrases will typically act as parts
of speech

— E.g.: The champions of banana: Looks like a

noun

— E.g.: will eat a banana : Looks like a verb

e Phrases take the characteristics of the head
word

— The word that governs the meaning

— We label the nhrase hv the POS catesorv of the

Or More Correctly

* Constituent phrases have constituent phrases

— “The champions of banana”: Noun phrase

— “will eat banana pie in a friendly face off to
determine who’s a better chimpanzee”: Verb

phrase

— Note: Simply focusing on the main two terms

gives you most of the meaning

e Sub-phrases
— (NP

Challenge

 How to segment the text

— How to find the constituent phrases

— Needed, to interpret it

e To do so, we will first describe a grammar for
the language

e But first.. lets formally define language

What is a formal language

"« Aformal language is a se
together with a set of rul
are formed

* More formally:

— leot ¥ he a cet nf evmhnlc

Formal Grammar

"o Aformal grammar is the set of
language
* |tcomprises(X,N,P,S):
— A finite set of terminal symbo
* Also called its alphabet
— A finite set of non-terminal sy

A f‘f\+ A‘ lﬂlﬁﬂdllﬁ*:ﬁlﬂ lﬁlllf\l‘ n

“Recognizing” a language

"« Given a language L ¢
with a specific set of
rules..

The Chomsky Hierarchy of
Language

.-""-—— —_\

Recursively Enumerable

. ContextSenrA \
e |
\ l'
\ Context - Free "
|

|
)

'.

The Chomsky hierarchy of languages. Each language type is characterized by the

\I

type of grammar required to construct it

The Chomsky Hierarchy of
Language

Recursively Enumerable

Context-Sensitive

l Context - Free
\
|
\
Regular

The Chomsky hierarchy of languages. Each language type is characterized by the
type of grammar required to construct it

Regular language

* Aregularlanguage can be produc

 Avregular grammar has rules of th
— B—a BEN, aeXx
— B—alC; CeN

— B — &, wheregistheemptys

Regular language

° A regular |a ngL All strings produced by a regular

grammar can be viewed as begin
obtained by incremental extension
of substrings by one symbol at

 Aregular gram|atime

B Even if the grammar originally
specified increments in blocks of
symbols with more complex rules,
— B — aC’ (it can be redefined as an equivalent
grammar based on incremental

_— B — €, Wlone-symbol extensions

— B — a;

It such redefinition is not possible,
the grammar is not reqular

Regular language examples

* Regexps
e Restricted sets of commands, poetry..

»| behin

e Or even fairly complex structure

— Can even produce all possible word sequences for
a fixed vocabulary
e But not “selective” enough for proper natural language

Regular Languages

NDF

Example : Find the state diagr% for the NDFA with the state table
shown in table. The final states are s,and s;

DF
A
(- f e f
start — Input
state 0 1
n a

So So 5 S1 S3
1 So 51, 83

Ee) So0> $2

S3 S, S1, $> 51

Finite State Automaton, accepting the pattern b(an)+e

 Regular languages can be recognized by finite-
state automatons

— A machine with a finite number of states, including

some ‘“‘terminal’ states

— Transitions from one state to another by

The Chomsky Hierarchy of
Language

Recursively Enumerable

Context-Sensitive

Context - Free

The Chomsky hierarchy of languages. Each language type is characterized by the
type of grammar required to construct it

CFG

"o ACFG comprises (X, N, P,
have the form:
— B — something; B € N

— Only restriction, the prod
context It appears In

e i thal HC nf tha nradiirti

CFGs are not (necessarily) finite
state

 Considerthe production rules
— S>> A A->bAc; A->a A-c¢

* This produces the following strings
— & (empty string), a, bc, bac, bbcc,

— Number of bs is equal to the number of
* May be infinite

a TA mvradii~ra A lace: &~ Aartierd: A AvviavAa

CFGs are not (necessarily) finite
state

 Considerthe production rules
— A->bAc; A->a A-c¢

* This produces the following strings
— & (empty string),—a_bc_hac_hhcc

* May be infinite

a TA mvradii~ra A lace: &~ Aartierd: A AvviavAa

The Chomsky Normal Form

"« The CNF representation of a Cl
« G=(XN,P,S)

— S = & [emptystring]

— A—a AE€EN, a€eX

* Non terminal produces a term

A « DOr. A D rr ~ NI

Examples of languages produced
by a CFG

* Programming languages
— Every open loop must be closed

e Regardless of size of program within the loop
— Which may itself have loops

— Parentheses must be closed

e Natural language?

The Chomsky Hierarchy of
Language

Recursively Enumerable

Context-Sensitive

@(t - Free

Regular

The Chomsky hierarchy of languages. Each language type is characterized by the
type of grammar required to construct it

Context-sensitive and higher

grammars

* Context-sensitive grammar: Production rules

depend on context

* Recursively-enumerable grammar: Any

grammar that can be recognized by a Turing

machine

e Actua

| unlimited natural language 1s not well

mode]

ed even by recursively enumerable

grammar according to Chomsky

Typical uses of language

 Check if a given string belongs to a language
— Can this have been produced by language X
— Recognition (regexp)
— Verification (computer programs)

e Guess how 1t was produced

— Determine its structure
* Parsing

Returning to our problem

e The champions of banana will eat a banana
pie In a friendly faceoff 7o determine who's

a better chimpanzee

* How do we 1dentity the constituent phrases?

Natural language can be modeled
by a CFG

e Grammatically spoken/written language largely
follows a CFG structure

— Natural spoken language doesn’t, but parts of it
nevertheless do

 Model the language with a CFG

* Determine the constituents of any sentence by
parsing 1t with a CFG

— Its not pertect it’s a model

An example of a CFG

X = {that,this, a,the,man, bool
o TN =HAS,NP,NOM, VP, Det,Nour

N A+ N 2 Fp/a

. P. A,AAIM . L\hh” I ‘:‘
I’I‘IML\ AN L\I\I\”

— S->NBVP
— S > Aux NPVP
- S-> VP

An example of a CFG

Y. = {that, this, a, the, man, bool

N=AS,NP,NOM, VP, Det,Nour

N A+ N 2 Fp/a

P. A,AAIM . L\I\A” I “:‘
I’I‘IML\ AN L\I\I\”

— S->NRVP
— S > Aux NPVP

- S-> VP

Note: a non-terminal may be expanded by multiple production rules.
a terminal may appear against multiple non-terminals.

Simplified

X = {that,this, a,the, man, bool
« N ={S5 NP,¥RB, Det,Noun,|Verb

A,I\AIM . L\hh” I "

e | P: e « Lhanls

— S > NPVP™>
— S > Aux NPVP
- S->VP

Finding the constituents

o The man read this book o

Det — that | this | a | the
Noun — book | flight | meal |
Verb — book | include | read

Aux — does

man

S (The man read this book)

Finding the constituents

s S - NP VP
S — Aux NP VP

e The man read this book

NP (The
man)

NP — Det Noun
VP — Verb
VP — Verb NP

Det — that | this | a | the
Noun — book | flight | meal |
Verb — book | include | read

Aux — does

man

S (The man read this book)

VP (read this
book)

Finding the constituents

S - NPVP
S — Aux NP VP

e The man read this book

sty NP — Det Noun
VP — Verb

VP — Verb NP

Det — that | this | a | the
Noun — book | flight | meal |
Verb — book | include | read

Aux — does

man

S (The man read this book)

NP (The VP (read this

/n\ book)

Det Noun
(The) (man)

Finding the constituents

S S NPVP === Det — that | this | a | the
h d h . b k S — Aux NP VP Noun — book | flight | meal | man
® T e man rea t lS 00 S—->VP Verb — book | include | read

NP — Det Noun
VP — Verb

Aux — does

VP — Verb NP

S (The man read this book)

NP (The VP (read this
/nh\ book)
Det Noun

Finding the constituents

° Th d h . b k S - Aux NP Vp=====t==¥ Noun — book | flight | meal | man
e man rea l- lS 00 S—->VP Verb — book | include | read
NP — Det Noun Aux — does
VP - Verb
VP — Verb NP

S (The man read this book)

NP (The VP (read this
/n\ book)

Det Noun

(1[he) (man)

Th ma

Finding the constituents

S - NPVP
S — Aux NP VP

e The man read this book

NP — Det Noun
VP — Verb
st VP — Verb NP

Det — that | this | a | the
Noun — book | flight | meal |
Verb — book | include | read

Aux — does

man

S (The man read this book)

VP (read this

/R
Verb P (this

(read) book)

Finding the constituents

e The man read this book

S - NPVP
S — Aux NP VP

NP — Det Noun
VP — Verb
VP — Verb NP

Det — that | this | a | the
Noun — book | flight | meal |
Verb — book | include | read

Aux — does

man

S (The man read this book)

rea
d

VP (read this

/R
Verb P (this

(niad) book)

Finding the constituents

S 5 NPVP Det — that | this | a | the
h d h . b k S — Aux NP VP Noun — book | flight | meal | man
® T e man rea t lS 00 S—->VP Verb — book | include | read

st NP — Det Noun
VP — Verb

Aux — does

VP — Verb NP

S (The man read this book)

NP (The VP (read this
/n %\ ./b BK
Det Noun Verb P (this
('lIhe) (man) (riad) bl&@\
Th ma rea Det Noun

e n d (this) (book)

Finding the constituents

S s NPVP ¥ Det — that | this | a | the
h d h . b k S - Aux NP VP Noun — book | flight | meal |
® T e man rea t lS 00 S—->VP Verb — book | include | read

Det
(1[he>
Th

NP — Det Noun
VP — Verb

Aux — does

man

VP — Verb NP

S (The man read this book)

VP (read this

/X
Verb P (this
(niad) blﬁh)\

rea Det Noun
d (lthis) (book)
thi

S

Finding the constituents

S — NPVP
S — Aux NP VP=

e The man read this book

Det
(1[he>
Th

NP — Det Noun
VP — Verb

—

Det — that | this | a | the
Noun — book | flight | meal |
Verb — book | include | read

Aux — does

man

VP — Verb NP

S (The man read this book)

VP (read this

N
Verb P (this

(riad) j?ﬁkﬂ\\\\\\\\‘

rea Det
d ﬂgns)
thi

S

Noun

(bfok)

boo
k

Finding the constituents

S 5 NPVP Det — that | this | a | the
h d h . b k S - Aux NP yp====t=9 Noun — book | flight | meal | man
® T e man rea t lS 00 S—->VP Verb — book | include | read

NP — Det Noun
VP — Verb

Aux — does

VP — Verb NP

S (The man read this book)

NP (The VP (read this
/n ﬁ\ ,/b BK
Det Noun Verb P (this
('The) (man) (relad) Iﬂ'ﬁk\)\‘
Th ma rea Det Noun
e n d q'this) (bfok)
Each node represents a constituent thi boo

S k

Finding the constituents

S/—>NP VP Det — that | this | a | the
o — Aux NPV Noun — book | flight | meal | man
® The man read thlS bOOk §- Verb — book | include | read
NP — Det Noun Awx — does
VP — Verb

VP — Verb NP

S (The man read this book)

~
~
o \—\
_— s
-

NP (The VP (read this
man) book)

e There are multiple rules expanding S. How

did we know which one to apply?

— In general there may be many production rules for

any non-terminal. How do we know which one to

annly?

Finding the constituents

S
//\ .) S
NP VP Trout in the brook? S
/\ /\
Det Nom VP PP
N RN Saw the fat?
the Adj N Vv NP P NP
I AN
little bear saw Det Nom in Det Nom)
I N | | The little bear saw?
the Adj Afj r|4 the rlq
fine fat trout brook

* Finding the right combination to compose the

sentence 1s a challenging search problem

— The problem of parsing

* But wait... it gets tougher..

Parses are not unique

S S
A A
NP VP NP VP
N V PP N V PP
He looked P NP He looked P NP p
| —T | |
at D N PP at D N with D
| | N |
the dog P NP the dog
I N
with D N
| |
one eye

e Parses can be ambiguous

— Grammars can be ambiguous

e Admit multiple parses

— English 1s an ambiguous language

one eye

Problem: Production rules are not
: prioritized.

NP VP NP VP
N \Y PP N V PP PP
He looked P NP He looked P NP P NP
at D N PP at D N th D N
| | — | | | |
the dog P NP the dog eye
| N -
with D N
I I
one eye

* Consider this (not so great) exc
— VP >V PP
— VP -V PP PP

Disambiguating: Attempt 1

#_ﬂ...ﬂ"’\ --’,.ﬂ"\
NP VP NP VP
N V PP N V PP PP
He looked P NP He looked P NP P NP
t D N PP at D N th D N
| | N | | | |
the dog P NP the dog one eye
| N ' B
with - D N
| |
y

 Probabilistic selection:

— P(parse) = f(f1(tree), f-

* E.g. P(parse) x< exp(Q,; A

Disambiguating: Attempt 1

A A
NP VP NP VP
N \Y PP N V PP PP
He looked P NP He looked P NP P NP
at D N PP at D N wth D N
| | — | | | |
the dog P NP the dog one eye
| N
with D N
I I
one eye

"« Probabilistic selection:

— P(parse) = f(fi(tree), f,(t

* E.g. P(parse) x exp(Q; Aifi(

— Exampbles of features

Disambiguating: Attempt 2

NP VP

 P(parse) = P(R{,R,,R3,...)

» P(parse) = P(R{)P(R;|R{)P
— But thisis a CFG.

o | - = ~

Probabilistic Context Free
(:rammar

S

#_‘_,...ﬂ"\ A
NP VP NP VP
N \Y PP N V PP PP
He looked P NP He looked P NP P NP
at D N PP at D N wth D N
| | — | | | |
the dog P NP the dog one eye
| N ' -
with D N
I I
one eye

* Assign probability distributions oy
— VP >V PP(0.2)
— VP -V PPPP(0.8)

Probabilistic Context-Free
Grammar

Associate a multinomial
sides to the set of rules s

— Conditional probability c

Generative story:
1. Instantiate the start sy

Discrete time branching process

e Structure as the result of a discrete time
branching process

— Start in a known 1nitial state, carry out stochastic
steps (parameterized using multinomials) until
some termination condition i1s met

— Steps are (conditionally) independent of one
another: probabilities multiply

— Total probability is the probability of the steps

1.0

v Z

T <

1.0 x p(NP VP
S)

Yz

Z Z

T <

1.0 x p(NP VP
S)
x p(JJ NN | NP)

T Z

Z Z

T <

1.0 x p(NP VP |
S)

x p(JJ NN | NP)
x p(V | VP)

/\ 1.0 x p(NP VP
S)

N vV X p(JJ NN | NP)
x p(VI1VP)
/P\ P‘ x p(angry 1 JJ)
J N \Y
N

angry

dogs

1.0 x p(NP VP
S)

x p(JJ NN | NP)
xp(VIVP)

x p(angry 1 1))
X p(dogs | NN)

1.0 x p(NP VP S)
/ \ x p(JJ NN | NP)

N \Y x p(VI1VP)
P x p(angry | JJ)
/P\ X p(dogs | NN)
] N V x p(bark 1 V)
Jl |
angry dogs bark

p(r,x) = [[p(r | G)F"<"

reg

Probabilistic Context Free
(:rammar

S

A A
NP VP NP VP
N V PP N V PP .-
He looked P NP He looked P NP P NP
| T — | —T | N
at D N PP at D N wth D N
| | — | | | |
the dog P NP the dog one eye
| PN | PN
\Vlth D N vaerdla m Al
I I
one eye

* Assign probability distributions oy
— VP >V PP(0.2)
— VP -V PPPP(0.8)

HMMs are Special PCEFGs

e (Actually HMMs are special PFSGs)
e Alphabet 2

e N = HMM states Q

e Start state qO

* Rules
q — x q° with probability pemit(x | q) ptrans(q’ | q)
q — € with probability ptrans(stop | q)

Weighted Context Free Grammar

--__‘_,...ﬂ"’\ A
NP VP NP VP
N V PP N V PP PP
He looked P NP He looked P NP P NP
at D N PP at D N wth D N
I I — I I | |
th dog P NP th dog
I N | N
with - D N
I I
y

* Scores applied to rules n

— Can just be weights
e VP >V PP (—2)

Weighted Context-Free Grammar

 Don’t need a generative story; just assign
weights to rules.

But where do the parse trees

themse 2
An arbitrarily drawn tree
o Is there an arrangement of rules that fits this?

NP VP

| ..--/\
N V PP
He looked P NP
| e —
at D N PP
| | —
the dog P NP
l N
with D N

| He looked at the dog with one eye

one eye

 How to hypothesize a parse tree for a sentence,
given a CFG (or PCFG or WCFG)?

— There are an exponentially large number

Parsing

He looked at the dog with one eye He looked at the dog with one eye

* Consider every possible tree over the words
e Unambiguous grammar:
— One of these trees aligns with the grammar

 Ambiguous grammar:

— Find a tree that aligns with the grammar

Some parsing algorithms

* CYK parser
— (J. Cocke ‘70, D. Younger ‘67, T. Kasami ‘65)

e Earley’s parser

CYK parser: Unambiguous CFGs

e Explores every possible tree, but does so with a
dynamic program

e To keep computation down, works only with
CNF grammars

— Recall that every CFG can be rewritten as a CNF

— Result of CNF formalism: Every node a tree must
connect with either a node to the immediate left or
the immediate right

— Result of contiguity constraint in grammar: Every
node must represent the entire sequence of words
below it

CYK : Unambiguous CFGs

\%%

W W W
2 3

W W W w

. 1 4 5 6 7 8

e Given a grammar and a word s
wl...wN:

equence

e Construct this triangle (number of rows =

n~n

CYK : Unambiguous CFGs

Every tree can be drawn
using only vertical lines and
lines tilted left 450

Every possible tree
can be represented

| within this grid . .
~ Every "node" merges exactly

two lines (CNF grammar)

Every "node" spans all
words in the triangle

| below it

W W W W W W W W
1 2 3 4 5 6 7 8
* Given a grammar and a word sequence

wl...wN:
e Construct this triangle (number of rows =

CYK : Unambiguous CFGs

W W W W W W W W

e For each Word 12n %he4 ﬁsrst6 I'(7)W find all

production rules that can produce it.
— Store (pointers to) all in the corresponding block

CYK : Unambiguous CFGs

1 2 3 4 5 6 7 8
e For each block 1n the next row, find all rules that

produce any combination of the non-terminals

immediately below it

CYK : Unambiguous CFGs

1 2 3 4 5 6 7 8
e For each block 1n the next row, find all rules that

produce any combination of the non-terminals

immediately below it

CYK : Unambiguous CFGs

1 2 3 4 5 6 7 8
e For each block in the next row, find all rules that

produce any combination of the non-terminals

immediately below it

CYK : Unambiguous CFGs

1 2 3 4 5 6 7 8
e For each block in the next row, find all rules that

produce any combination of the non-terminals

immediately below it

CYK : Unambiguous CFGs

1 2 3 4 5 6 7 8
e For each block in the next row, find all rules that
produce any combination of the non-terminals

immediately below it

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
. J 2 3 4,5 6 7 8
e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
. J 2 3 4,5 6 7 8
e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
* For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W
2

W W W W W

. .l 3 4.5 6 7 8

e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
* For each hlgﬁer row 1n seqﬁeﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
* For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W
2 5 6

\%

. .l 3 4, 7 8

e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seq&eﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seqﬁeﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
2 4. 5 6

. 3
e For each hlgﬁer row 1n seqﬁeﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W
2

W W W W W

. .l 3 4.5 6 7 8

e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W
2

W W W W W

. 4l 3 4.5 6 7 8

e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

N

"

e For each h1gher2r OW 1n se6q17leﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

W W W W W W

CYK : Unambiguous CFGs

r

W W W W W W W W
2 4. 5 6

. 3
* For each hlgﬁer row 1n seqﬁeﬁgce
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs
N

W W W W W W W W
. J 2 3 4,5 6 7 8
* For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
. J 2 3 4,5 6 7 8
e For each higher row in sequence
— For each block

* For each pair of lower nodes that can span the entire
section of words represented by the block
— Identify any rules that produce any combination of NTs for the

CYK : Unambiguous CFGs

W W W W W W W W
1 2 3 4 5 6 7 8

e If, eventually, the top box 1s populated, the
string belongs to the language

CYK example

b a a b a

e From slides I found on a UC Davis website

CYK example

S _
S _
A —
B -

B

b a a b a

e From slides I found on a UC Davis website

CYK example

S _
S _
A —
B -

B A,

b ba a b a

e From slides I found on the UC Davis website

CYK example

S _
S _
A —
B -

B A A, B A,

b ba ba b ba

e From slides I found on the UC Davis website

CYK example

S _
S _
A —
B -

B A A, B A,

b ba ba b §

e Possible productions: B A, BC
 We find two rules for this

CYK example

S —
S —
A -
B -

S,

J.A.L

B A A, B A,

e e e
b a a b

e Possible productions: B A, BC
 We find two rules for this

CYK example

S _
S _
A —
B -

S,

J.AL

B A, A, B A,

c c c
b a a b a

e Possible productions:
e One rule

AA, AC,CA,CC

CYK example

S _
S _
A —
B -

S, B

J.AL

B A, A, B A,

c c c
b a a b a

e Possible productions:
e One rule

AA, AC,CA,CC

CYK example

S —
S —
A -
B -

S, B

; A, A, B A,

b ba ba b)

e Possible productions: A B, CB

* Two rules (note both produce A B)

CYK example

S —
S —
A -
B -

S, B S,

; A, g, B A,

b ba ba b)

e Possible productions: A B, CB

* Two rules (note both produce A B)

CYK example

S —
S —
A -
B -
S, B S, S,
A a A
B A, A, B A,
€ € €
b a a b
e Possible productions: B A, BC

e Two rules

CYK example

e Two combinations that work
e Possible productions:

— BB

e A

¢ _
S _
A —
B -

S, B S, S,

A a A

B A A, B A,

b a “a b -

CYK example

e Two combinations that work
e Possible productions:

— BB

e A

S _
S _
A —
B -
, B S. S,
A a A
B A A B A,
b a “a b =

CYK example

‘.Av’ =

P P
— 1D D)

nﬂ]‘T NN N 1f‘1‘l1ﬂ

S
S _
A —
B -

S, B S, S,

A C A

B A, A, B A

b a “a b -

e Possible productions:
_AS, AC, CS.CC

CYK example

S —
S —
A -
B
B -
S, B Sa S’
A a A
B A, A, B A
b a “a b -
e Possible productions:
_AS, AC, CS.CC
P D

— 1D D)

nﬂ]‘T NN N 1‘111&

CYK example

S _
S _
A —
B
B -
, B S. S,
A a A
B A, A, B A,
b a “a b =

e Possible productions:
— AS, AA,CS,CA
— SA,SC,CA, CC

nﬂ]‘T NN N 1‘111&

CYK example

S _
S _
A —
B B
B -
, B S. S,
A a A
B A, A, B A,
b a “a b -

* Possible productions:
— AS, AA,CS,CA
— SA,SC,CA, CC

nﬂ]‘T NN N ‘If‘]‘l]ﬂ

CYK example

¢ _
S _
A —

B B

B -

S, B S, S,

A C A

B A, A, B A,

b a “a b =

e Possible productions:
— SS, SC, AS, AC

— BB

NTI\ 1(’111Q 'Pf\f‘ (2% ol W4

~Ff thaca

CYK example

S _
S _
A —

B B

B -

S, B S, S,

A C A

B A, A, B A,

b a “a b =

e Possible productions:
— SS, SC, AS, AC

— BB

NTI\ 1(’111Q 'Pf\1r' (2% ol W4

~Ff thaca

CYK example

S —
S —
A -
B B
B -
S, B S, S,
A a A
B A, A, B A,
b a “a b -
e Possible productions:
— AB,CB
— BS, BA

RA D

CYK example

S —
S, A, S =
C A -
B B
B -
S, B S, S,
A a A
B A, A, B A,
b a “a b -
e Possible productions:
— AB,CB
— BS, BA

RA D

CYK example

S —
S —
S, A,
c A -
B B
B -
S, B S, S,
A a A
B A, A, B A,
b a “a b ~a
e Possible productions:
IS THIS PARSE UNAMBIGUOUS?
— AB,CB
— BS, BA

RA D

CYK example

RA D

S —
S —
; A
fa k —
/ / B -
S, B S, S,
A a A]
B A, A, B A,
b a “a b ~a
e Possible productions:
IS THIS PARSE UNAMBIGUOUS?
— AB,CB
_BS. BA Possibly not... (can't be sure yet)

CYK example

S A, 5 —
S _
S. A,
e A -
B B
B -
S, B S, S,
A a A
B N A, B A
b a ~a b =

e Possible productions:

— BS, BA, BC
- SB, AB

T]ﬂvaa 1f‘1“l1ﬂ(’1 nﬂﬂ1‘7'

CYK example

S 5 -
S _
S.A.
e A -
B B
B -
S, B S, S,
A a A
B A, A, B A,
b a ~a b “a

e Check: Does the top box have S

— Remove other entries String does belong to the language

But how to find constituents?

* Need the parse tree for this

e At each box,
— For each stored NT

e keep track of not just the non-terminals, but the child
nodes

 Forward trace from root to find the parse tree
— The parse tree provides the constituents

CYK example

S w S —
— o
S A, —
e B A -
S B -
S, B | S, {\ S,
A (A
A a A \
B P Az~ \B A,
b a “a b ~a

e Resulting parse

— Constituents can be found from it

a Tramina tha narca tvran 10 mAaco1thhla hamraiioca thic 10 an

CYK example

S _
S _
S, A. S
e
B B A —
S B S, S, ™
A a A
B A, A, B A,
b a “a b ~a

* Now add another ru

CYK example

S —
S —
— S
S, A S —
C
B |) B A —
o e I
\\Al’ C’ LA‘: ,
B A, A, B A,
b a “a b “a
e Possible pI'OdllCtiOIlSI Not an unambiguous parse!
— BS, BA, BC Many possible parses
—_SB. AB How do we choose the best parse?

e Multinle S rmilec annlv

CYK with PCFG
S - B

S - A
S—>B
A—-B

b a a b a

e Rules now have probabilities
— Note, probabilities of all expansions of any

e e~ L NTITY a6~ 1T N

CYK example
S - B.

S - A
S—>B
A—-B

B A0S5C |A0SC B A0.5.C
05—0-5 0-5 05—0-5
b a a b a

e Keep track of probabilities of rules applied

CYK example

S - B.
S - A,
S - B
A—-B
SO0.125, A
0,125
B A0S5C [A0S5C B A 0.5.C
65— b5 65—065
b a a b a

e For each new rule inserted in table, multiply
the probability of the rule by the probability of

1 *°1 1

CYK example

S - B
S—- A
S—> B
A—-B
SO0.125, A B S 0.125,C S0.125, A
0,125 0.125 0.125 0,125
B A0S5C [A0S5C B A 0.5.C
05 05 05 05 95
b a a b a

e For each new rule inserted in table, multiply
the probability of the rule by the probability of

1 *°1 1

CYK example

S - B
S—- A
S—> B
A—-B
B B — —
SO0.125, A B S 0.125,C S0.125, A
0,125 0.125 0.125 0,125
B A0S5C [A0S5C B A 0.5.C
05 05 95 05 95
b a a b a

e For each new rule inserted in table, multiply
the probability of the rule by the probability of

1 *°1 1

CYK example

S—->B
S - A
S - B
C
1/128 A — B
B B — —
1/32 1/32
SO0.125, A B S 0.125,C S0.125, A
0,125 0.125 0.125 0,125
B A0S5C [A0S5C B A 0.5.C
05 05 05 05 05
b a a b a

e For each new rule inserted in table, multiply
the probability of the rule by the probability of

1 *°1 1

CYK example

S - B.
P=0.5%1/64 (S- S e A‘
>BA)
g P=03%1/64 (S- 5—>B
1/128 N) A — B
// —~~ - A
1/32 1/32 T~
SO0.125, A /y/ S 0.125,C S0.125, A\
0,125 0.125 0,125
B Ads5C laosc | B A0.5.C
05 05 05 05 05
b a a b a

pick the most probable one

* When a rule has two or more possible productions,

CYK example

S—->B
S - A
S—->B
S 1/128 A B
1/128 Y~ —
/ B \ ™ -~
1/32 1/32 T~
SO0.125, A S 0.125,C SO.125,A\
0,125 O 125 0.125 0,125
B A0S5C [A0S5C B A 0.5.C
05 05 05 05 05
b a a b a

* When a rule has two or more possible productions,

pick the most probable one

CYK example

S - B.
S - A
C SI1/128 A S — B‘
1;28 ?7\\ A—-B

™ ra i
1/32 / 1/32 \
T~

SO0.125, A B S 0.125,C S0.125,
0,125 0.125 0.125 0,125

B A0S5C [A0S5C A05C

n L '~ = 0N

05 05 05 0

5
b a a b a
* When a rule has two or more possible productions,

pick the most probable one

CYK example

S - B.
S - A
. S — Bt
C S1/128 A 1/128
1/128 - A RN B
B B \ ~ -
1/32 /1/32
S0.125,A B S0.125,C 50.125,/:
0,125 0.125 0.125 0,125
B A0S5C [A0S5C B A 0.5.C
05 05 05 05 05

b a a lJo a

* When a rule has two or more possible productions,

pick the most probable one

CYK example

S - B.
S - A
C SI1/128 A S — B‘
1;28 ?7\\ A—-B

™ ra i
1/32 / 1/32 \
T~

SO0.125, A B S 0.125,C S0.125,
0,125 0.125 0.125 0,125

B A0S5C [A0S5C AOSC

n L '~ = 0N

05 05 05 0

5
b a a b a
e Note: Competition happens only between

different expansions of the same non-terminal

CYK example

pick the most probable one

S - B.
S - A
C S1/128 A 1/128
1/128 A — B
B B . .
1/32 1/32
125, B S0.125,C S0.125, A
, 0.125 0.125 0,125
B A0S5C [A0S5C B A 0.5.C
05 05 05 05)
b a a b a

* When a rule has two or more possible productions,

CYK example

S - B.
S - A
C S1/128 A 1/128
1/128 A —> B
B B . .
1/32 1/32
B $0.125,C $0.125, A
0.125 10.125 0.125
A0S5C [A0S5C B A 0.5.C
05 05 05 05
a a b a

* The same algorithm also applies to weighted

PCFGs

CYK example

S - B.
: S - A
. S —> Bt
C S1/128 A 1/128
1/128 A RN B
B B |
1/32 1/32 ~ -
S0.125, A B S0.125,C S0.125, A
0,125 0.125 10.125 0,125
B A0S5C JA0S5C B A 0.5,C
05 05 05 05 05
b a a b a

 What 1s the cost of parsing a string of N words
with R rules?

CYK, PCFG and Structured

prediction..
e The task we just performed..

* Assigning probabilities to entries from a very
large set

— Modelled a probability distribution over all
possible parse trees

— Selected the most probable parse

— (How would you find the second most possible?)

o Structured prediction

Parsing CFGs

e The CYK parser 1s actually very expensive and
inefficient

— Nobody really uses it anymore except for very
simple task

* A more efficient method 1s the Earley parser
— Jay Earley, 1968, CMU

e Then he gave it all up and became a shrink investigating
his “inner critic”..

— It’s a very complicated looking algorithm

CYK vs Earley

e CYK: Bottom up
— Build all possible* trees that can be built from the

word sequence
— Find which conforms to grammar

— *Check conformance to grammar while building

trees on words, to keep restrict computation

e Earley: Top down
— Build all possible™ trees that can be produced by

orammar

Earley example

@ bea e a @ be ae S —

S —
A -

* We will maintain a list of partially expanded rules

at each of the shown locations
— We will go left to right

Earley example

@ bea ©@a e be awe S —

S —
A -

e The star indicates the position until which we’ve

successtully built a constituent

Earley example

@ bea e a e be awe S —

S —
A -

“predict”

e The first symbols are A and B. Expand them

— Include all possible expansions of A and B 1in one pass

Earley example

@ bea e a @ be ae S —

S —
A -

“predict”

* We now have a new non-terminal C. Expand it

— Don’t revisit already-expanded NTs or you’ll have an
infinite loop

Earley example

@ bea e a @ be ae S —

S —
A -

* Only one of the terminal-producing rules 1s valid

for the upcoming symbol (b)

— Retain it and 1ts predecessors. Kill all the rest

Earley example

@ bea e a @ be ae S —

S —
A -

* Only one of the terminal-producing rules 1s valid

for the upcoming symbol (b)

— Retain 1t and its parents. Kill all the rest

Earley example

@ bea ©@a e be awe S —

S —
A -

e Can also kill orphaned rules that don’t lead to “S”

Earley example

® bea ©@¢a e be ae S —

i s
A -

e Can also kill orphaned rules that don’t lead to “S”

Earley example

® bea @ a @ be ae

[3
3

e “Scan” the “b”’: Move the terminal rules that

produce b over to the second column

— Move the star to show “b”’ 1s consumed

Earley example

@ bea e a @ be ae S —

id f¢ -
‘ A -

e Recursively expand the first NT 1n each of the

rules until we get to terminals

— “Scan” their expansions to determine 1f any of them

Earley example

@ bea e a @ be ae S —

i s
A -

e Recursively expand the first NT 1n each of the

rules until we get to terminals

— “Scan” their expansions to determine if anv of them

Earley example

@ bea @ a e be awe S —

i i
A -

* Move the rules that can produce the “a” and their

parents to the next column
— Move the *

Earley example

® bea e a @ be ae S —

S —
A -

* For all rules, keep track of parents
* For avalid string, we will get at least one

- 1£ ivn ~Aadt masildi Al A At Al Aviic v~ A A~ Lar A ..

Earley example

® b @ a

® 2 @ be ae S —

How to disambiguate?

* For all rules, keep track of parents
* For avalid string, we will get at least one

r Y |£IAIA RA+ IMII|+:IA|A ﬂllﬂk ﬁﬁﬁﬁﬁﬁﬁ : AAAAAAA k!

Earley with PCFGs

® bea © a @ be ae

e How?

S - B.
S - A
S - B
A—-B

Evaluation

* Take a sentence from the test set.
e Use your parser to propose a hypothesis parse.
* Treebank gives you the correct parse.

e Precision and recall on labeled (or unlabeled)
constituents.
— Also, average number of crossing brackets
(compared to correct parses) 1n your hypotheses.
* The training/development/test split has been
held constant for a long time; possibly a cause
for concern.

Parsing in Reality

e Generally speaking, few industrial-strength
parsers actually call CKY or Earley’s.

e Extensions to the basic CFG model (next topic)

make reduction to CFG expensive.

e Standard techniques:

— Beam search
— Agenda-based approximations with pruning and/or
AF

— “Coarse-to-fine”

The problem

* The basic parsers are inefficient

 The PCFG structure enables us to
disambiguate, but are nevertheless insufficient
to actually model the language

Examples of ambiguous parses

S S

N NP/\VP

NP VP | /\
| /\ NNS

NNS | VBD NP
| VP PP workers | /\
workers TN TN dumped \p PP
VBD NP IN NP | P
| | | N NNS IN NP

i DT NN
dumped NNS into | | P

‘Ik. a|l b!n sacks into DT NN
SacKs I |

a bin

e From Michael Collins

— Prepositional attachment ambiguity

Examples of ambiguous parses

NP

NP
/’\ G Sp
NP CC NP o
PN | | NNS
NP PP and NNS IN

| NP
P | dogs | /l\
NP CC NP

I
NNS IN NP cats n

| I | | |
dogs mm NNS NNS and NNS

houses houses cats

e From Michael Collins

— Coordination ambiguity: Identical set of rules
applied, only difference 1s the order

Solution: Lexicalization

"« Attach to each non-termin:
It can construct

— S>> NPVP
— S(questioned) — NP(lav

* Each rule now multiplies

Lexicalized Parse

S
NP VP
/\
DT NN N
Vi NP

the lavwyer questioned DT NN

the witness

S(questioned)
NP(lawyer) VP(questioned)
DT(the) NN(lawyer) __ _ :
| | Vt(questioned) NP(witness)
the lawyer |
questioned DT(the) NN(witness)

the witness

Natural language is not context

independent..
 But CFGs are easy to handle
e Compromise’

e Context free grammar
— But parent-dependent probabilities
— Like an expanded markov state in Markov chains

Parent annotation

S S

N TN

NP VP NP’S VP’S

SR PIIQP/\

PRP VBD NP NN VBD NP'VP NN

Lo | . |
need DT flight need DT flight

a a

e Rules are cloned for different parents

— Parent-specific probability distributions over
expansions

— But the actual rules remain basic CFG rules!

Parent Annotation

NP—=p NP NP—q NP PP

/@\ /@\
6‘@?0@ CH©

Parent Annotation

NPVP —p NPNP
NPNP —r NPNP NPVP —g NPNP

& 620
/ @ @

Parent Annotation

* Another way to think about it ...

° Befor%(tree) = H p(childsequence(n) | n)

n€nodes(tree)

p(tree) = H p(childsequence(n) | n, parent(n))

n€Enodes(tree)

e Now:

e This could conceivably help performance
(weaker independence assumptions)

e This could conceivably hurt performance (data
sparseness)

Parent Annotation

From Johnson (1998):
PCFG from WSJ Treebank: 14,962 rules

Of those, 1,327 would always be subsumed!

After parent annotation: 22,773 rules
Recall 69.7% -> 79.2%:; precision 73.5% —> 80.0%

Head Annotation

 “Ilove all my children, but one of them 1s
special.”

VP -> VBD
NP -> DT NNS

e Heads not in the Treebank.

e Usually people use deterministic head
rules (Magerman, 1995).

Algorithms

* These “decorations” atfect our parser’s
runtime.
— Why?
— Any 1deas about how to get around this?

Some Famous Parsers

Training Parsers In Practice

e Transformations on trees

. Some of these are generally taken to be crucial
. Some are widely debated
. Lately, people have started learning these transformations

 Smoothing is crucial; the grammars that result from
transformed trees have lots more rules and therefore
more parameters.

from Johnson (1998)

WSJ 22 trees

<L

Precision/Recall

Yield

WSJ 22 strings

.

Fvaluation

WSJ 2-21 trees

! Transform

Transformed trees

l Count local trees

PCFG

@ Parse

Parses

@ Detransform

Detransformed parses

Collins Model 1 (1997)

e Trees are headed and lexicalized
— What’s the difference?

VPsaw — Vsaw NPman

 Huge number of rules! PPthrough

VPsaw — Vsaw NPman

PPwith

VPsaw — Vsaw NPwoman

PPthrough
VPsaw — Vsaw
NPman

e Key: factor probabilities within rule.

Collins Model 1 (1997)

e Everything factors down to rules, then further.
We’re given the parent nonterminal and head

'

Collins Model 1 (1997)

* Everything factors down to rules, then further. We’re given the
parent nonterminal and head word.

* Randomly generate the head child’s nonterminal.

Collins Model 1 (1997)

* Everything factors down to rules, then further. We’re given the
parent nonterminal and head word.

* Randomly generate the head child’s nonterminal.

* Generate a sequence of left children.

¢
o

Collins Model 1 (1997)

* Everything factors down to rules, then further. We’re given the
parent nonterminal and head word.

* Randomly generate the head child’s nonterminal.

* Generate a sequence of left children.

¢
&

Collins Model 1 (1997)

Everything factors down to rules, then further. We’re given the
parent nonterminal and head word.

Randomly generate the head child’s nonterminal.

Generate a sequence of left children.

Then right. \

&

Collins Model 1 (1997)

Everything factors down to rules, then further. We’re given the
parent nonterminal and head word.

Randomly generate the head child’s nonterminal.

Generate a sequence of left children.

P
SO

Then right.

Collins Model 1 (1997)

Everything factors down to rules, then further. We’re given the
parent nonterminal and head word.

Randomly generate the head child’s nonterminal.

Generate a sequence of left children.

P
SO

Then right.

Collins Model 1 (1997)

* Interesting twist: want to model the distance between head
constituent and child constituent. How?

Collins Model 1 (1997)

* Interesting twist: want to model the distance between head
constituent and child constituent. How?

* Depth-first recursion.

generate these before this

Collins Model 1 (1997)

* Interesting twist: want to model the distance between head
constituent and child constituent. How?

* Depth-first recursion.

e Condition next child on features of the parent’s yield so far.

generate these before this

Collins Model 1 (1997)

* Interesting twist: want to model the distance between head
constituent and child constituent. How?

* Depth-first recursion.

* Condition next child on features of the parent’s yield so far.

P(PPywith | VPsaw, right, “the cat who liked milk”) ~ p(PPuwith | VPsaw, right, length > 0, +verb)

p(LnaunaLn—laun—la "'aL17u1aH7w7R17v17R27v27 '"7Rm”Um | Paw)
= p(H | Pw)

' Hp(Lzauz | P7waH, leftaAz)
i=1

p(StOp | P7w7H7 left7A'n+1)

.HP(Ri,vi | P,w, H, right, A;)
i=1

-p(StOp | P7 w, Ha I'ight, Afn,—{—l)

Collins Models 2 and 3 (1997)

* Model 2: Complements, adjuncts and
subcategorization frames
Treebank decoration: -C on specifiers and arguments

Probability model: first pick set of complements
(side-wise), must ensure they are all generated

the issue was a bill funding Congress

 Model 3: Wh-movement and extraction
Treebank decoration: “gap feature”

Probability model: gap feature “passed around the
tree,” must be “discharged” as a trace element.

the store that IBM bought last week

Other Points

 Unknown words at test time: any training
word with count < 6 becomes UNK

 Smoothing: deleted interpolation

* Tagging 1s just part of parsing (not a separate
stage)

 Markov order increased 1n special cases:

— within base noun phrases (NPBs) - first order

— conjunctions (“‘and”) predicted together with second
conjunct

— punctuation (details in 2003 paper)

Practical Notes

e Collins parser 1s freely available

* Dan Bikel replicated the Collins parser cleanly
in Java
Easier to re-train
Easier to plug-and-play with different options
Multilingual support
May be faster (with current Java) - I’'m not sure

Charniak (1997) - in brief

e Generally similar to Collins

e Key differences:

— Used an additional 30 million words of unparsed text
In training

— Rules not fully markovized: pick full nonterminal
sequence, then lexicalize each child independently

Charniak (1997) - in brief

Charniak (1997) - in brief

Charniak (1997) - in brief

Charniak (1997) - in brief

Charniak (1997) - in brief

Charniak (2000)

e Uses grandparents (Johnson '98
transformation)

e Markovized children (like Collins)

e Bizarre probability model:
Smoothed estimates at many backoff levels
Multiply them together
“Maximum entropy inspired”
Kind of a product of experts (untrained)

Comparison

labeled Averase
labeled recall . crossing
precision
brackets
Model 1 87.5 87.7 1.09
Collins Model 2 88.1 88.3 1.06
Model 3 88.0 88.3 1.05
1997 86.7 86.6 1.20
Charniak
2000 89.6 89.5 0.88

Klein and Manning (2003)

* By now, lexicalization was kind of controversial
So many probabilities, such expensive parsing: is it
hecessary?
e Goal: reasonable unlexicalized baseline
What tree transformations make sense?
Markovization (what order?)
Add all kinds of information to each node in the treebank

e Performance close to Collins model, much better
than earlier unlexicalized models

Markovization

horizontal: o«
vertical: 1

VP — VB NP PP

Markovization
|
horizontal: 1

vertical: 1 VP[VB ... NP] —
VP[VB ... PP] — VP[VB ...

Markovization

horizontal: o«
vertical: 2

VPS — VBVP NPVP

Markovization

e More vertical Markovization is better
— Consistent with Johnson (1998)

e Horizontal 1 or 2 beats O or o
e Used (2, 2), but if sparse “back off” to 1

Other Tree Decorations

Mark nodes with only 1 child as UNARY

Mark DTs (determiners), RBs (adverbs) when
they are only children

Annotate POS tags with their parents

Split IN (prepositions; 6 ways), AUX, CC, %
NPs: temporal, possessive, base

VPs annotated with head tag (finite vs. others)
DOMINATES-V

RIGHT-RECURSIVE NP

Comparison

abeled | labeled | 2V¢r98°
recall precision Cro5sIe
brackets
Model 1 87.5 87.7 1.09
Collins Model 2 88.1 88.3 1.06
Model 3 88.0 88.3 1.05
1997 86.7 86.6 1.20
Charniak
2000 89.6 89.5 0.88
K&M 2003 86.3 85.1 1.31

