Natural Language Parsing with Context-Free Grammars

SPFLODD Spring 2018

- Whole Foods Raises Prices For Suppliers
- What happened?

- Whole Foods Raises Prices For Suppliers
- What happened?

• Asteroid Skimming Past Earth May Loom Larger Than Exploding Russian Meteor

• Asteroid Skimming Past Earth May Loom Larger Than Exploding Russian Meteor

• Uber and Waymo have reached a \$245 million settlement in their massive legal fight over self-driving-car technology

• **Uber and Waymo** have reached a \$245 million settlement in their massive legal fight over self-driving-car technology

- Uber and Waymo have reached a \$245 million settlement in their massive legal fight over self-driving-car technology
- Sentences are composed of groups of words that carry key elements of their meaning
 - Changing these groups will *locally* modify the meaning..

- Uber and Waymo will eat a banana pie in their massive legal fight over self-drivingcar technology
- Sentences are composed of groups of words that carry key elements of their meaning
 - Changing these groups will *locally* modify the meaning..

- Uber and Waymo have eat a banana pie in their massive legal fight to determine who's a better chimpanzee
- Sentences are composed of groups of words that carry key elements of their meaning
 - Changing these groups will *locally* modify the meaning..

- The champions of banana will eat a banana pie in their massive legal fight to determine who's a better chimpanzee
- Sentences are composed of groups of words that carry key elements of their meaning
 - Changing these groups will *locally* modify the meaning..

- The champions of banana will eat a banana pie in a friendly faceoff to determine who's a better chimpanzee
- Sentences are composed of groups of words that carry key elements of their meaning
 - Changing these groups will *locally* modify the meaning..

Can be reordered

- The champions of banana will *eat* a banana pie to determine who's a better chimpanzee in a friendly faceoff
 - The champions of banana will eat a banana pie to determine who's a better chimpanzee in a friendly faceoff
- Whole foods raises prices for suppliers
 For suppliers whole foods raises prices

Grouping the words differently can change meaning

• Spare him *not kill him*

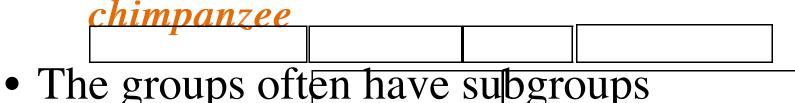
• Spare him not kill him

Though regrouping may sometimes permit Yoda..
The champions of banana will eat a banana pie in a friendly faceoff to determine who's a better chimpanzee

To determine who's a better chimpanzee in a friendly faceoff eat a banana pie the champions of banana will

Contiguity

- The groups are (generally) continguous
 - The champions of banana will eat a banana pie in a friendly faceoff to determine who's a better



- The champions of banana will eat a banana pie in a friendly faceoff to determine who's a better chimpanzee
- But splitting and redistributing the segments can change the meaning (if the result is

- The theory that sentences in a language have recursive block structure is ~2500 years old!
 - Pāņini

- An essential property of these block structures is that logical units never overlap
 - i.e. each block is contiguous
 - Although subblocks may be reordered within a block

Constituents

- The champions of banana will *eat* a banana pie in a friendly faceoff to determine who's a better chimpanzee
- We will call these word groups *constituent phrases* of the sentence
 - Constituents may have constituents..

Constituents and parts of speech

- The champions of banana will *eat* a banana pie in a friendly faceoff to determine who's a better chimpanzee
- Constituent phrases will typically act as parts of speech
 - E.g.: The champions of banana: Looks like a noun
 - E.g.: will eat a banana : Looks like a verb

Recap: Parts of speech

- Noun: **Names** of persons, places, things, feelings etc
 - John, cat, car, happiness
- Pronoun: Stands for a noun
 - I, you, we
- Verb: Words that represent action or doing
 Go, buy, be
- Adjectives: Modifiers for noun
 - Tall, fast, happy

Penn Treebank (Marcus et al., 1993)

• A million words (40K sentences) of *Wall Street Journal* text (late 1980s).

– This is important to remember!

- Parsed by experts; consensus parse for each sentence was published.
- Attempts to be theory-neutral, probably more accurate to say that it represents its own syntactic theory.
- Many other treehanks now available in other

According to the Penn Tree Bank

- 1. CC Coordinating1. conjunction
- 2.CDCardinal2.number3.
- 3. DT Determiner
- 4. EX Existential 4. there
- 5. FW Foreign word.
- 6.INPreposition of.subordinating7.

PRP\$ Possessive pronoun **RB** Adverb RBR Adverb, comparative RBS Adverb, superlative **RP** Particle SYM Symbol T() to

Constituents and parts of speech

- Constituent phrases will typically act as parts of speech
 - E.g.: The champions of banana: Looks like a noun
 - E.g.: will eat a banana : Looks like a verb
- Phrases take the characteristics of the *head* word
 - The word that governs the meaning
 - We label the phrase by the POS category of the

Or More Correctly

- Constituent phrases have constituent phrases
 - "The *champions* of banana": Noun phrase
 - "will *eat* banana pie in a friendly face off to determine who's a better chimpanzee": Verb phrase
 - Note: Simply focusing on the main two terms gives you most of the meaning
- Sub-phrases
 - (NP

Challenge

- *How* to segment the text
 - How to find the constituent phrases
 - Needed, to interpret it
- To do so, we will first describe a *grammar* for the language
- But first.. lets *formally* define language

What is a formal language

 A formal language is a se together with a set of rul are formed

• More formally: — Let Σ be a set of symbols

Formal Grammar

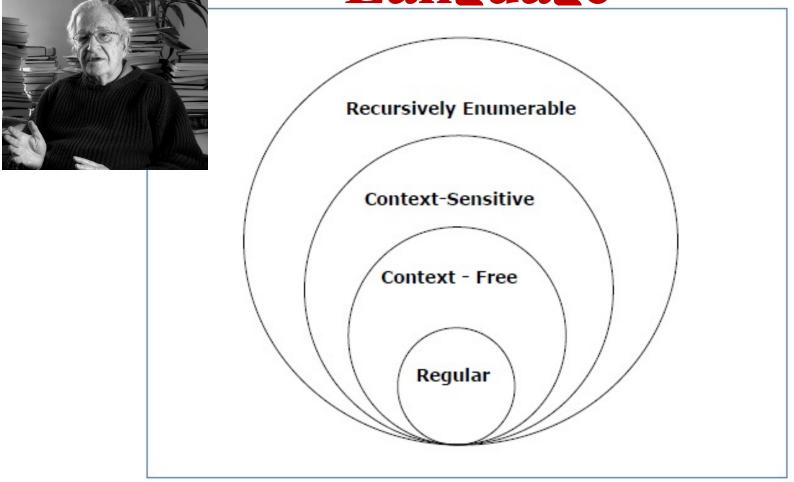
- A formal grammar is the set of language
 - It comprises $\langle \Sigma, N, P, S \rangle$:
 - A finite set of *terminal symbo*
 - Also called its alphabet
 - A finite set of non-terminal sy

A cat of production rulas D

"Recognizing" a language

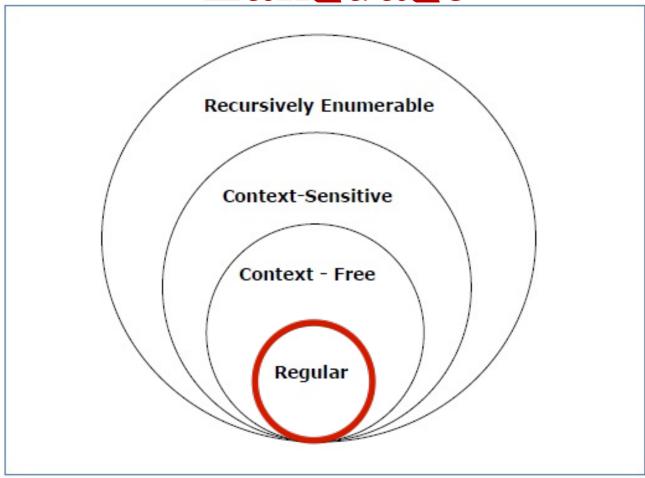
 Given a language L c with a specific set of rules..

The Chomsky Hierarchy of Language



The Chomsky hierarchy of languages. Each language type is characterized by the type of grammar required to construct it

The Chomsky Hierarchy of Language



The Chomsky hierarchy of languages. Each language type is characterized by the type of grammar required to construct it

Regular language

- A *regular* language can be produc
 - A regular grammar has rules of th
 - $B \longrightarrow a; B \in N, a \in \Sigma$

• • • • •

- $B \longrightarrow aC; C \in N$
- $B \rightarrow \varepsilon$, where ε is the empty st

Regular language

- A regular langu
 - A regular gram

All strings produced by a regular grammar can be viewed as begin obtained by incremental extension of substrings by one symbol at a time

 $- B \longrightarrow a;$

$$- B \longrightarrow aC;$$

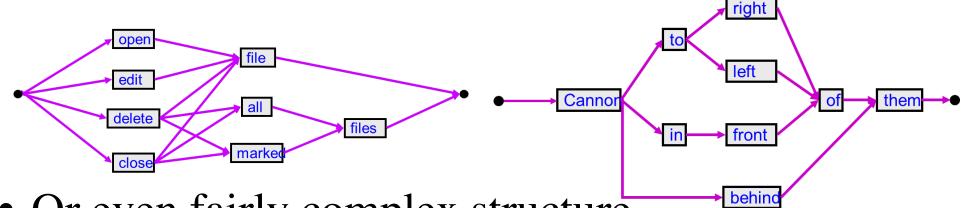
$$- B \rightarrow \varepsilon$$
, w

Even if the grammar originally specified increments in blocks of symbols with more complex rules, it can be redefined as an equivalent grammar based on incremental one-symbol extensions

If such redefinition is not possible, the grammar is not regular

Regular language examples

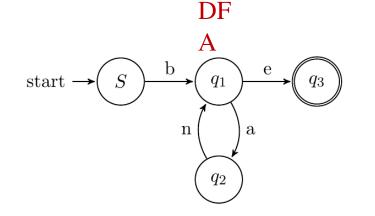
- Regexps
- Restricted sets of commands, poetry..



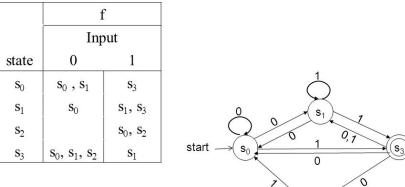
- Or even fairly complex structure
 - Can even produce all possible word sequences for a fixed vocabulary
 - But not "selective" enough for proper natural language

Regular Languages

NDF



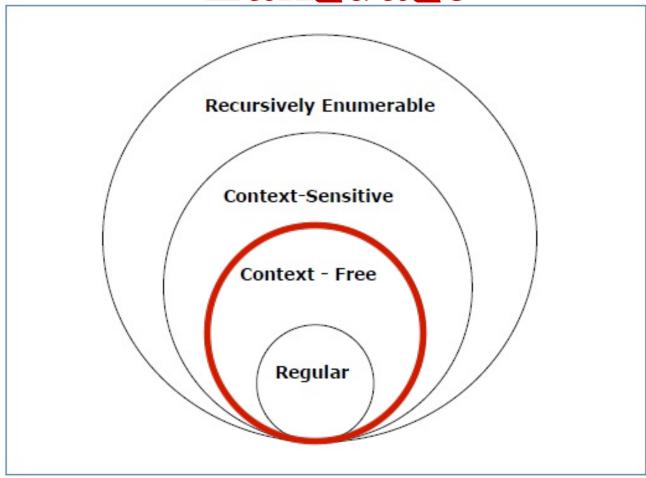
Example : Find the state diagram for the NDFA with the state table shown in table. The final states are s_2 and s_3



Finite State Automaton, accepting the pattern b(an)+e

- Regular languages can be recognized by finitestate automatons
 - A machine with a finite number of states, including some "terminal" states
 - Transitions from one state to another by

The Chomsky Hierarchy of Language



The Chomsky hierarchy of languages. Each language type is characterized by the type of grammar required to construct it

CFG

- A CFG comprises (Σ, N, P, Marcine A CFG comprises (Σ, N, P,
 - $-B \longrightarrow something; B \in N$
 - Only restriction, the prod context it appears in
 - i = the IHS of the production

CFGs are not (necessarily) finite state

Consider the production rules

 $- S \to A; A \to bAc; A \to a; A \to \varepsilon$

- This produces the following strings
 - ε (empty string), a, bc, bac, bbcc,
 - Number of bs is equal to the number of
 - May be infinite
- To produce the last a must be aware

CFGs are not (necessarily) finite state

Consider the production rules

 $- A \rightarrow bAc; A \rightarrow a; A \rightarrow \varepsilon$

- This produces the following strings
 - ε (empty string), a. hc. hac. hhcc.
 Number of bs is eq Is this Markov?

May be infinite

To produce the last a must be aware

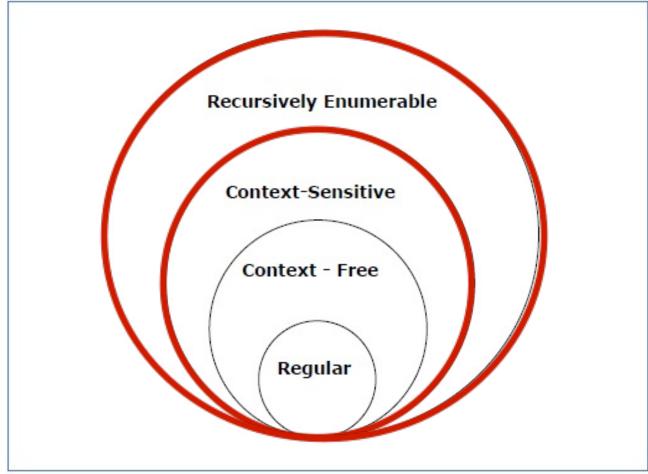
The Chomsky Normal Form

- The CNF representation of a CI
- $G = \langle \Sigma, N, P, S \rangle$
 - $-S \rightarrow \varepsilon$ [empty string]
 - $A \longrightarrow a; A \in N, a \in \Sigma$
 - Non terminal produces a terminal
 - $A \quad \nabla D \cap A \quad D \quad C \quad M$

Examples of languages produced by a CFG

- Programming languages
 - Every open loop must be closed
 - Regardless of size of program within the loop
 - Which may itself have loops
 - Parentheses must be closed
- Natural language?

The Chomsky Hierarchy of Language



The Chomsky hierarchy of languages. Each language type is characterized by the type of grammar required to construct it

Context-sensitive and higher grammars

- Context-sensitive grammar: Production rules depend on context
- Recursively-enumerable grammar: Any grammar that can be recognized by a Turing machine
- Actual unlimited natural language is not well modeled even by recursively enumerable grammar according to Chomsky

Typical uses of language

- *Check* if a given string belongs to a language
 - Can this have been produced by language X
 - Recognition (regexp)
 - Verification (computer programs)
- Guess *how* it was produced
 - Determine its structure
 - Parsing

Returning to our problem

• The champions of banana will *eat a banana pie* in a friendly faceoff *to determine who's a better chimpanzee*

• How do we identify the constituent phrases?

Natural language can be modeled by a CFG

- Grammatically spoken/written language largely follows a CFG structure
 - Natural spoken language doesn't, but parts of it nevertheless do
- Model the language with a CFG
- Determine the constituents of any sentence by *parsing* it with a CFG
 - Its not perfect it's a *model*

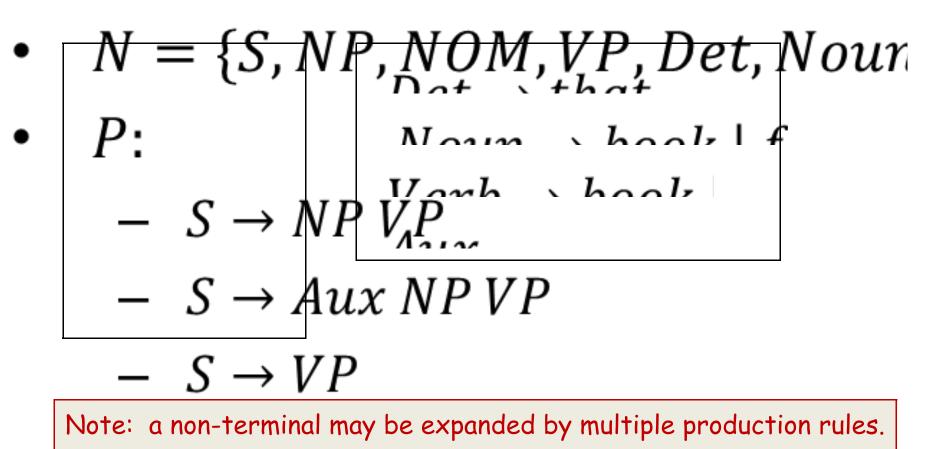
An example of a CFG

• $\Sigma = \{that, this, a, the, man, bool$

• $N = \{S, NP, NOM, VP, Det, Noun$ • P:- $S \rightarrow NP V_{A}^{P}$ - $S \rightarrow VP$ - $S \rightarrow VP$

An example of a CFG

• $\Sigma = \{that, this, a, the, man, bool$



<u>a terminal may appear against multiple non-terminals.</u>

Simplified

• $\Sigma = \{that, this, a, the, man, bool$

• $N = \{S, NP, WP, Det, Noun, Verb$ • P:• P:• $S \rightarrow NP VP$ $-S \rightarrow Aux NP VP$ $-S \rightarrow VP$

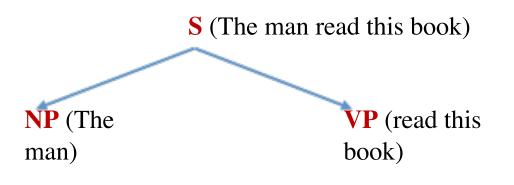
• The man read this book

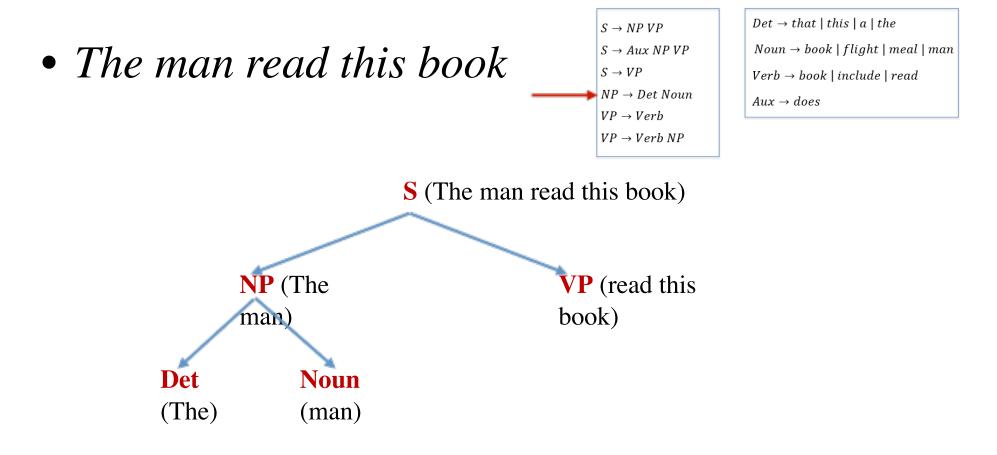
$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$
$S \rightarrow VP$
$NP \rightarrow Det Noun$
$VP \rightarrow Verb$
$VP \rightarrow Verb NP$

 $Det \rightarrow that | this | a | the$ $Noun \rightarrow book | flight | meal | man$ $Verb \rightarrow book | include | read$ $Aux \rightarrow does$

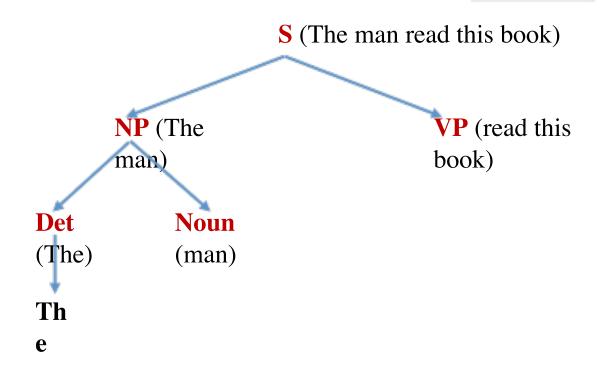
S (The man read this book)

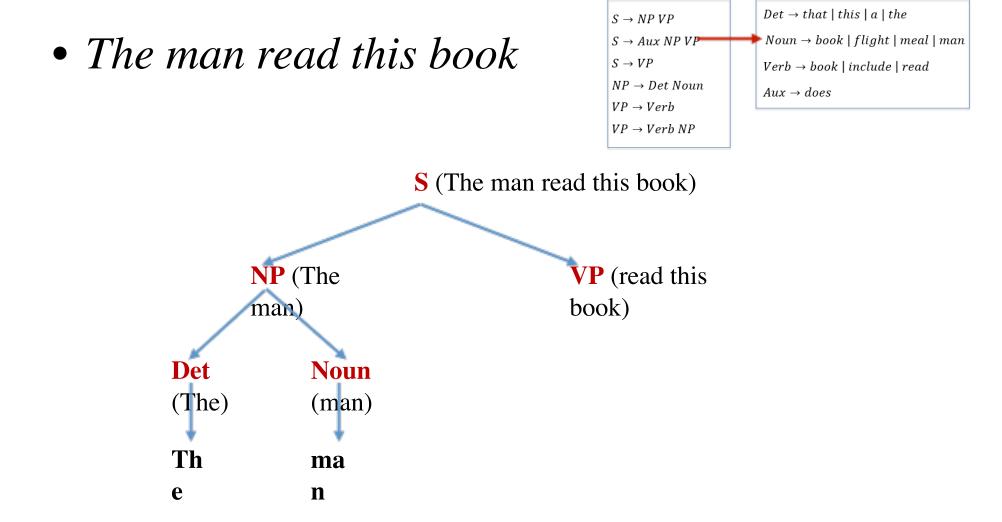
- The man read this book
- $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ $NP \rightarrow Det Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$
- $Det \rightarrow that \mid this \mid a \mid the$ $Noun \rightarrow book \mid flight \mid meal \mid man$ $Verb \rightarrow book \mid include \mid read$ $Aux \rightarrow does$

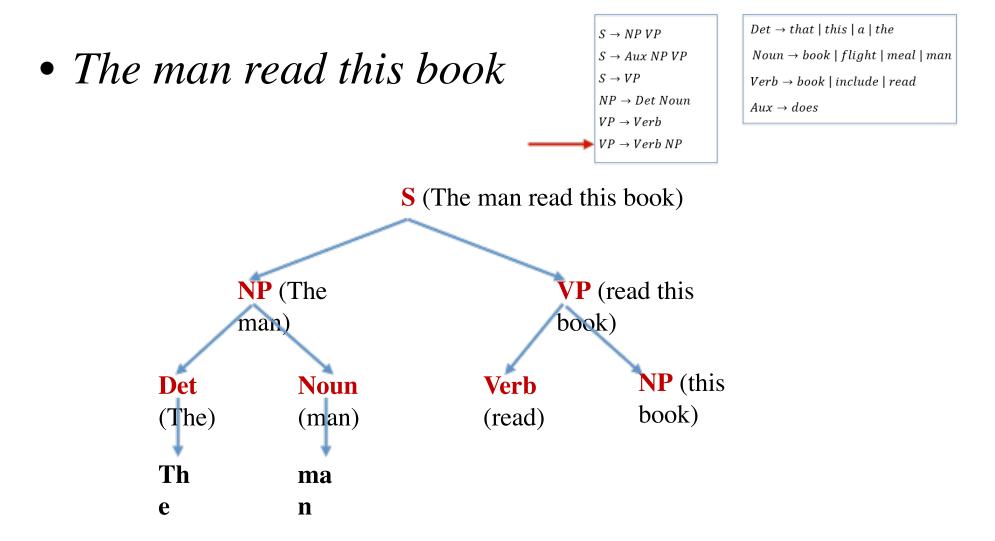


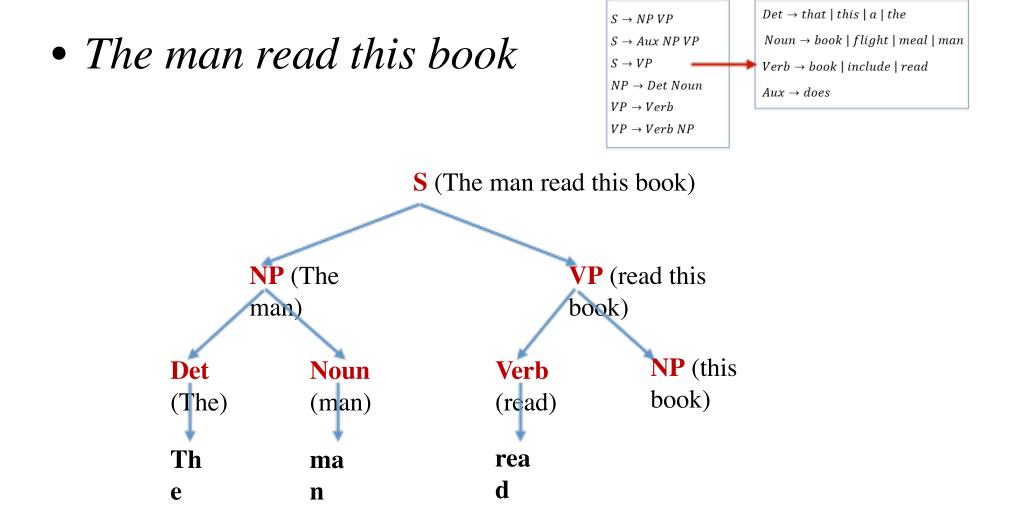


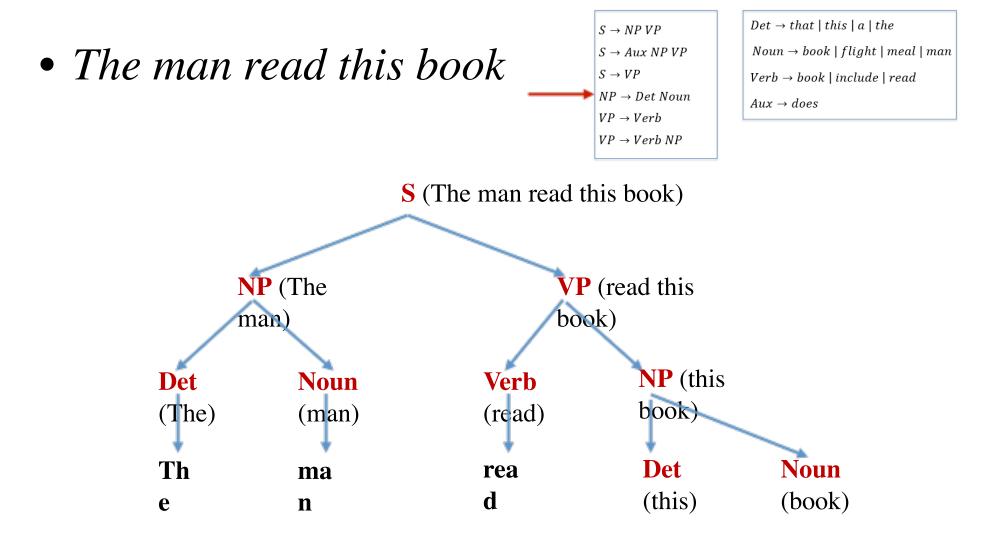
- The man read this book
- $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ $NP \rightarrow Det Noun$ $VP \rightarrow Verb$ $VP \rightarrow Verb NP$
- → Det \rightarrow that | this | a | the Noun \rightarrow book | flight | meal | man Verb \rightarrow book | include | read Aux \rightarrow does



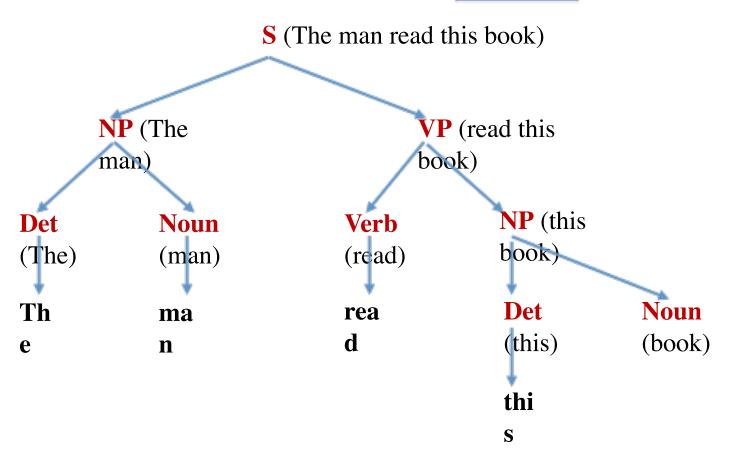


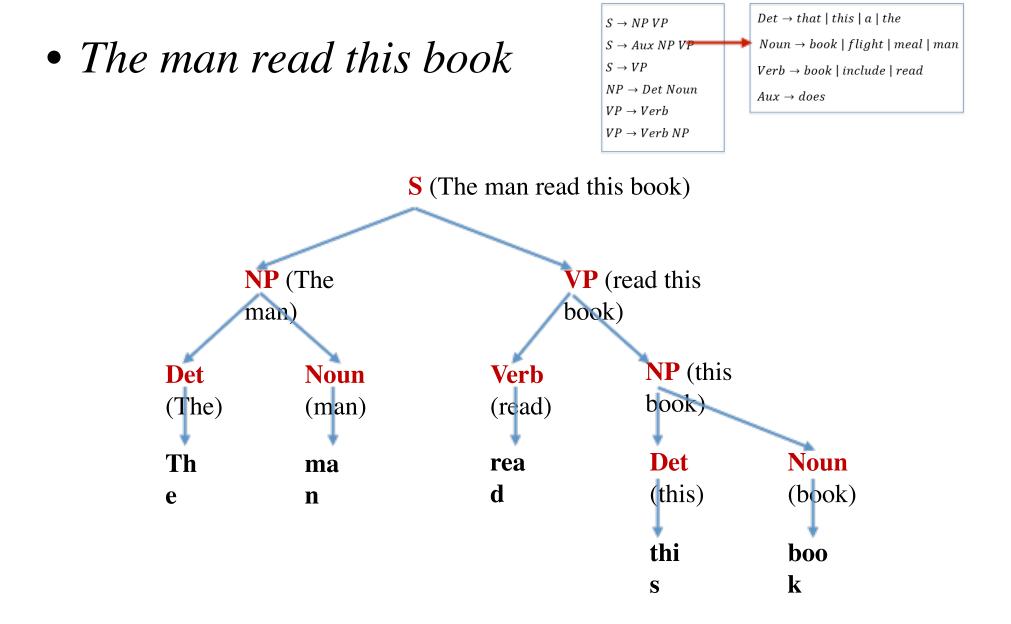


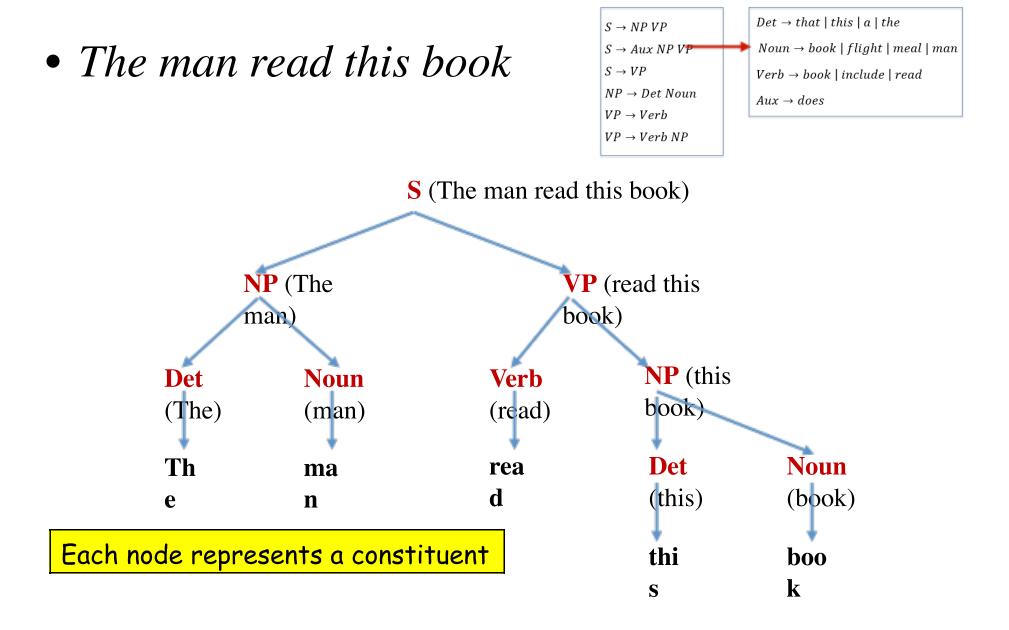




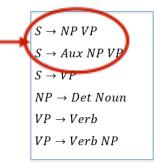
Det → that | this | a | the
 Noun → book | flight | meal | man
 Verb → book | include | read
 Aux → does



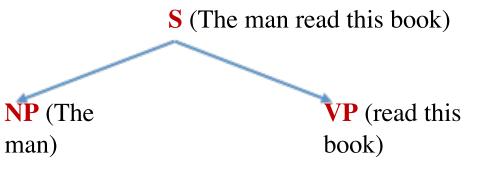




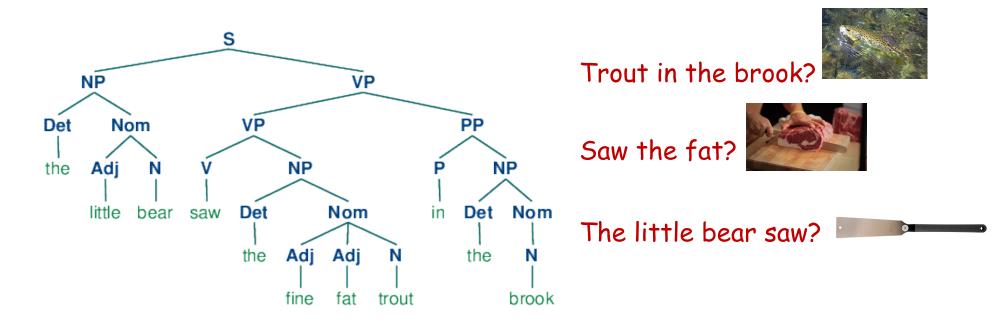
• The man read this book



 $Det \rightarrow that \mid this \mid a \mid the$ $Noun \rightarrow book \mid flight \mid meal \mid man$ $Verb \rightarrow book \mid include \mid read$ $Aux \rightarrow does$



- There are multiple rules expanding **S**. How did we know which one to apply?
 - In general there may be many production rules for any non-terminal. How do we know which one to apply?

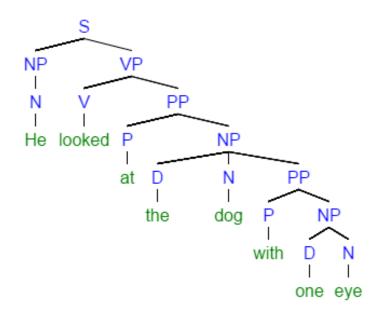


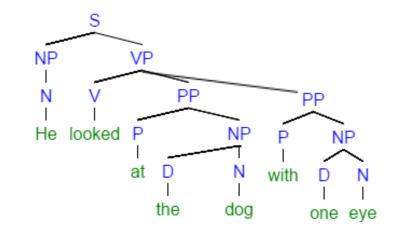
• Finding the right combination to compose the sentence is a challenging search problem

- The problem of *parsing*

• But wait... it gets tougher..

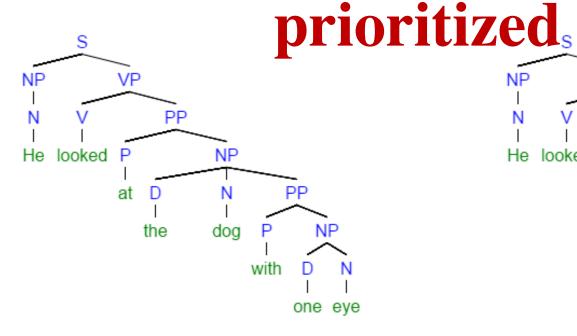
Parses are not unique

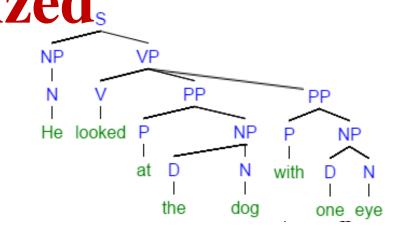




- Parses can be ambiguous
 - Grammars can be ambiguous
 - Admit multiple parses
 - English is an ambiguous language

Problem: Production rules are not



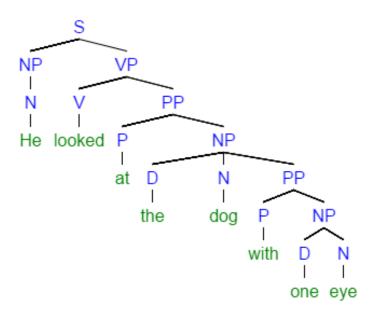


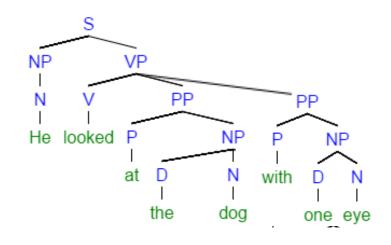
Consider this (not so great) exa

 $- VP \rightarrow VPP$

 $- VP \rightarrow VPPP$

Disambiguating: Attempt 1



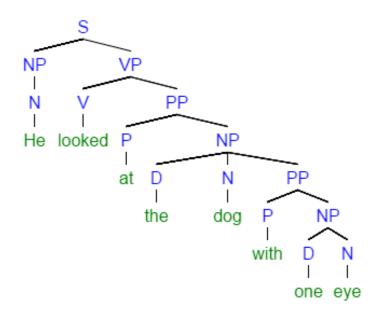


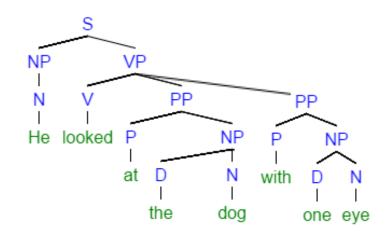
Probabilistic selection:

$$- P(parse) = f(f_1(tree), f_2)$$

• E.g. $P(parse) \propto exp(\sum_i \lambda_i)$

Disambiguating: Attempt 1

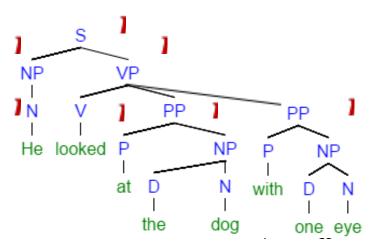




- Probabilistic selection:
 - $P(parse) = f(f_1(tree), f_2(t))$
 - E.g. $P(parse) \propto exp(\sum_i \lambda_i f_i)$

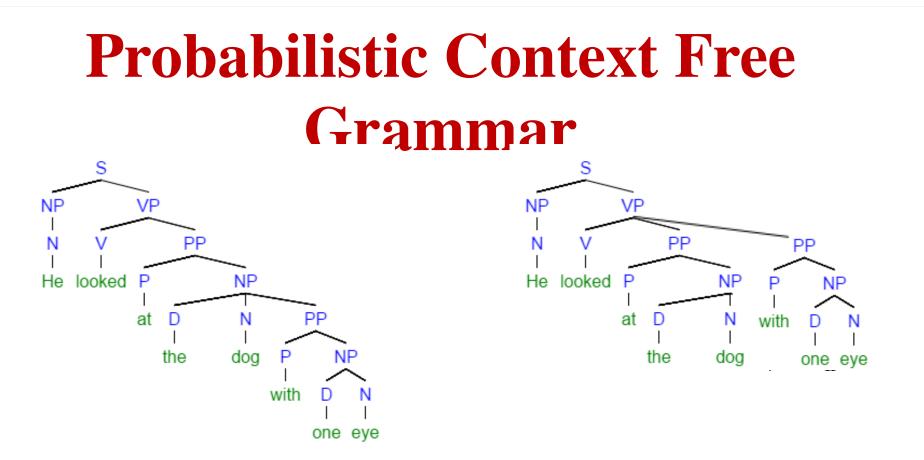
Examples of features

Disambiguating: Attempt 2



- $P(parse) = P(R_1, R_2, R_3, ...)$
 - $P(parse) = P(R_1)P(R_2|R_1)P$

But this is a CFG.



.

- Assign probability distributions ov
 - $VP \rightarrow VPP (0.2)$

 $-VP \rightarrow VPPPP(0.8)$

Assign probability distribution

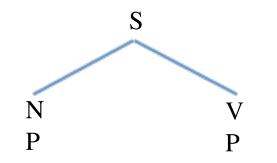
Probabilistic Context-Free Grammar

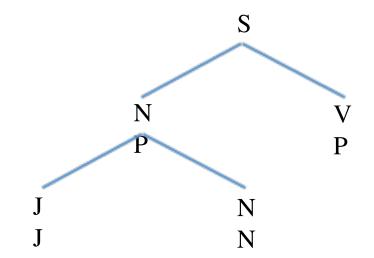
- Associate a multinomial sides to the set of rules s
 - Conditional probability c
 - Generative story:
 - 1. Instantiate the start sy

Discrete time branching process

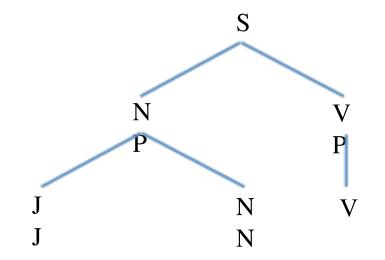
- Structure as the result of a **discrete time branching process**
 - Start in a known initial state, carry out stochastic steps (parameterized using multinomials) until some termination condition is met
 - Steps are (conditionally) independent of one another: probabilities multiply
 - Total probability is the probability of the steps

S 1.0

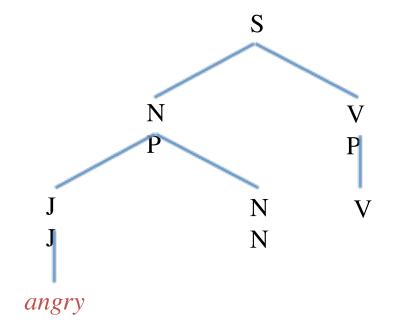


1.0 x p(NP VP I S) 

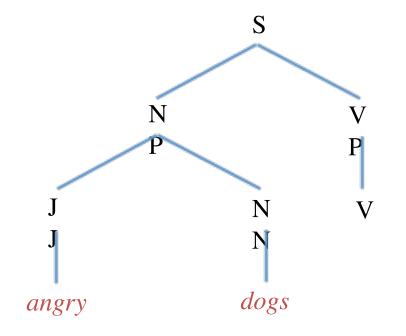
1.0 x p(NP VP | S) x p(JJ NN | NP)



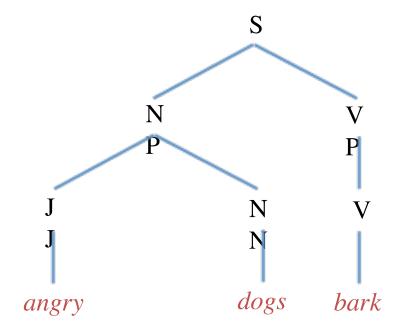
1.0 x p(NP VP | S) x p(JJ NN | NP) x p(V | VP)



1.0 x p(NP VP | S) x p(JJ NN | NP) x p(V | VP) x p(*angry* | JJ)

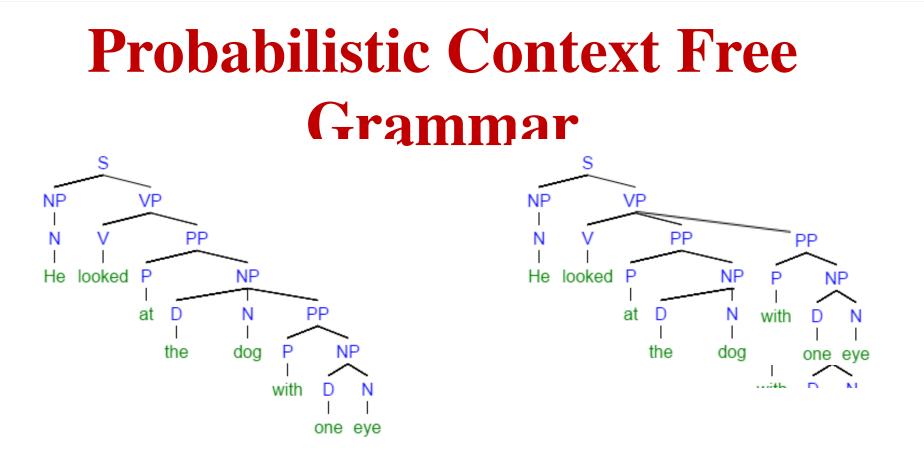


1.0 x p(NP VP | S) x p(JJ NN | NP) x p(V | VP) x p(*angry* | JJ) x p(*dogs* | NN)



1.0 x p(NP VP | S) x p(JJ NN | NP) x p(V | VP) x p(*angry* | JJ) x p(*dogs* | NN) x p(*bark* | V)

 $p(\tau, \mathbf{x}) = \prod p(r \mid \mathcal{G})^{f(r \in \tau)}$ $r \in \mathcal{G}$



- Assign probability distributions ov
 - $-VP \rightarrow VPP$ (0.2)

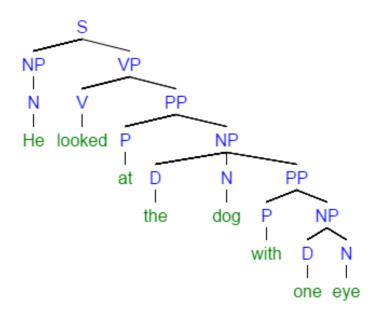
 $-VP \rightarrow VPPPP$ (0.8)

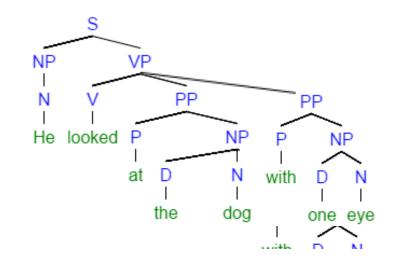
HMMs are Special PCFGs

- (Actually HMMs are special PFSGs)
- Alphabet Σ
- N = HMM states Q
- Start state q0
- Rules

 $q \rightarrow x q'$ with probability pemit(x | q) ptrans(q' | q) $q \rightarrow \varepsilon$ with probability ptrans(stop | q)

Weighted Context Free Grammar





Scores applied to rules ne

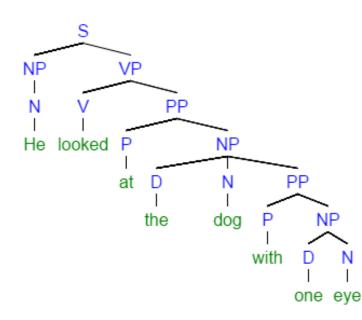
Can just be weights

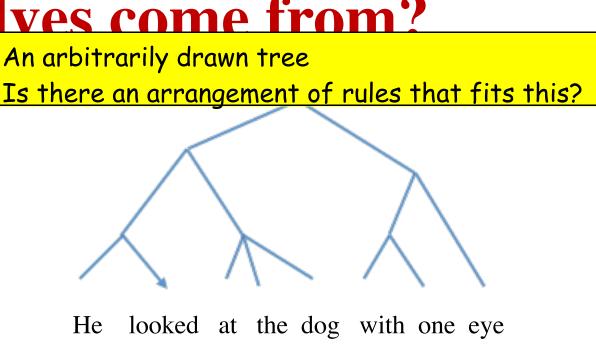
• $VP \rightarrow VPP(-2)$

Weighted Context-Free Grammar

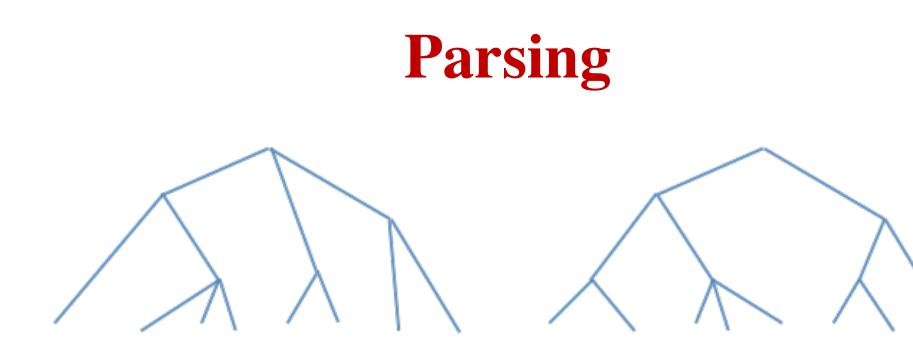
• Don't need a generative story; just assign weights to rules.

But where do the parse trees themselves come from?





- How to hypothesize a parse tree for a sentence, given a CFG (or PCFG or WCFG)?
 - There are an exponentially large number



He looked at the dog with one eye

He looked at the dog with one eye

- Consider every possible tree over the words
- Unambiguous grammar:
 - One of these trees aligns with the grammar
- Ambiguous grammar:
 - Find *a* tree that aligns with the grammar

Some parsing algorithms

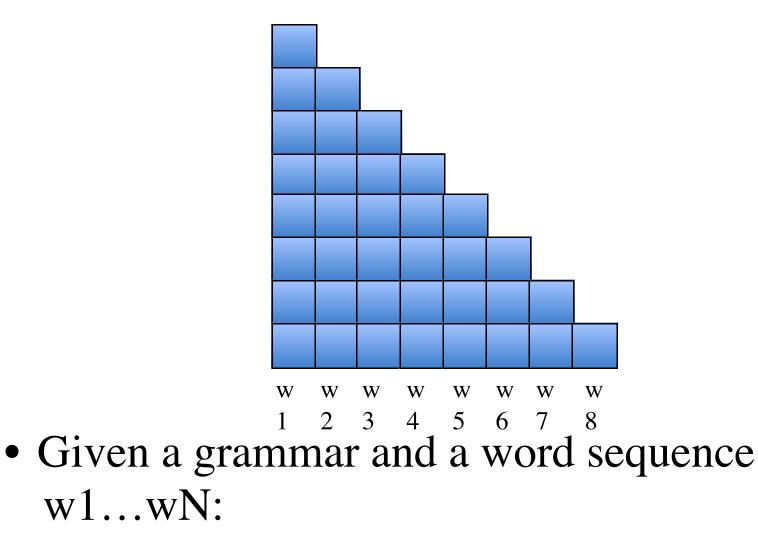
• CYK parser

– (J. Cocke '70, D. Younger '67, T. Kasami '65)

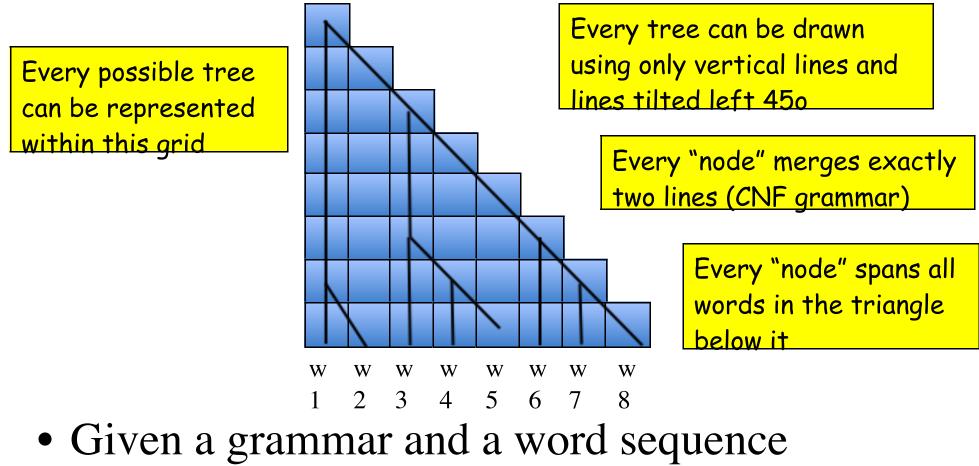
• Earley's parser

CYK parser: Unambiguous CFGs

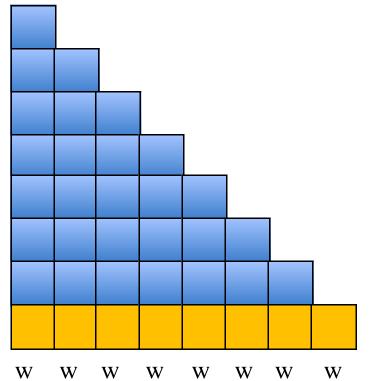
- Explores every possible tree, but does so with a dynamic program
- To keep computation down, works only with CNF grammars
 - Recall that every CFG can be rewritten as a CNF
 - Result of CNF formalism: Every node a tree *must* connect with either a node to the immediate left or the immediate right
 - Result of contiguity constraint in grammar: Every node *must* represent the entire sequence of words below it



• Construct this triangle (number of rows =

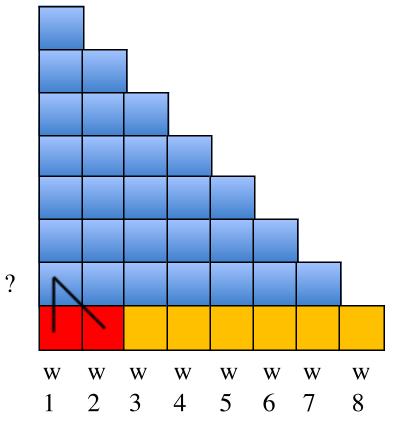


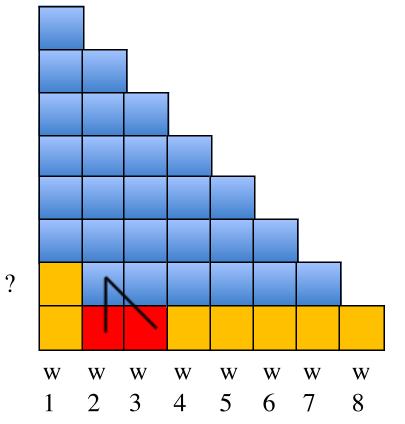
- w1...wN:
- Construct this triangle (number of rows =

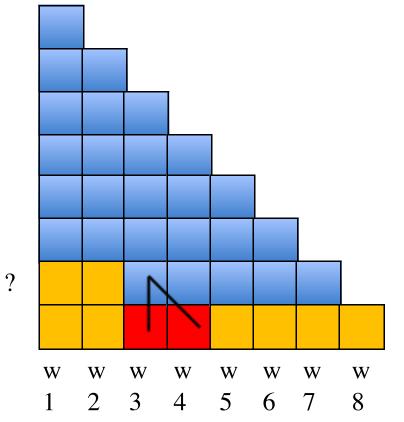


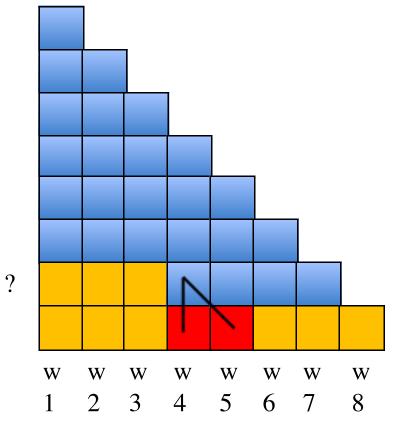
• For each word $\inf_{i=1}^{1} \inf_{i=1}^{2} \inf_{i=1}^{3} \inf_{i=1}^{4} \inf_{i=1}^{5} \inf_{i=1}^{6} \inf_{i=1}^{7} \inf_{i=1}^{8} \inf_{i=1}^{8} \inf_{i=1}^{7} \inf_{i=1}^{7} \inf_{i=1}^{7} \inf_{i=1}^{8} \inf_{i=1}^{7} \inf_{i=1}^{7} \inf_{i=1}^{8} \inf_{i=1}^{7} \inf_{i=1}^{7} \inf_{i=1}^{7} \inf_{i=1}^{8} \inf_{i=1}^{7} \inf_{i=1}^{7}$

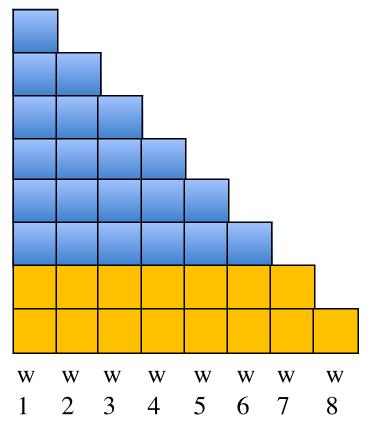
- Store (pointers to) all in the corresponding block

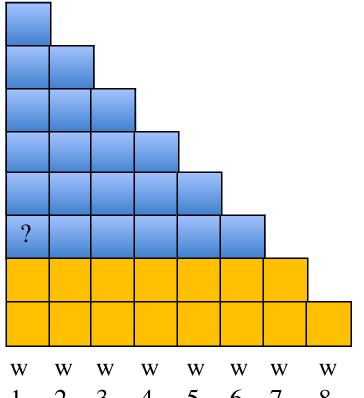




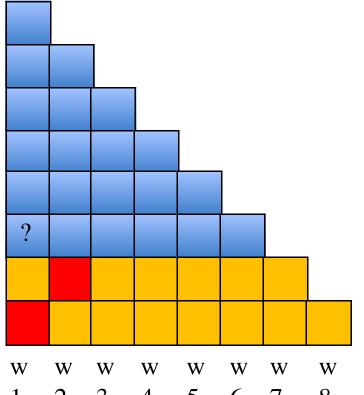




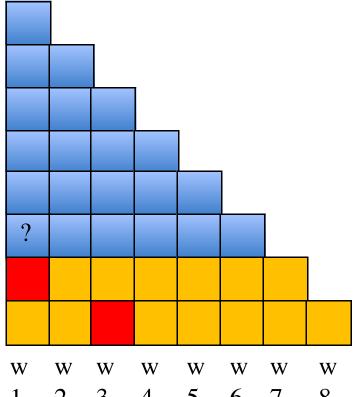




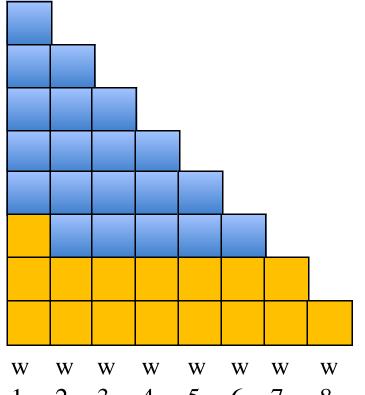
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



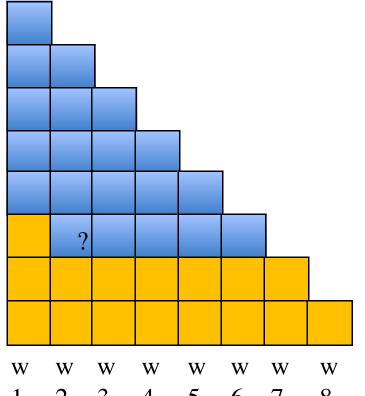
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



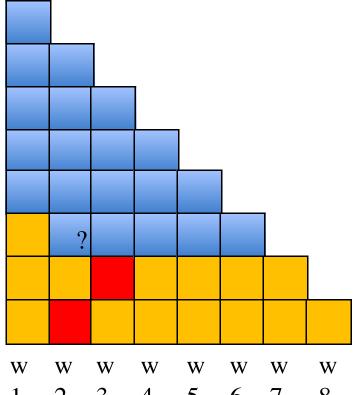
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



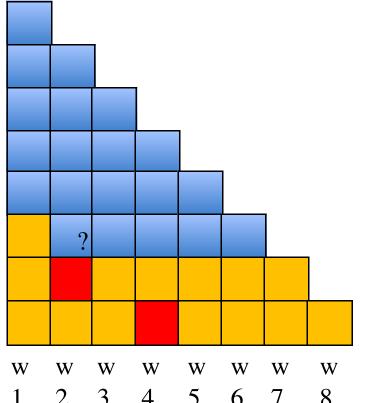
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



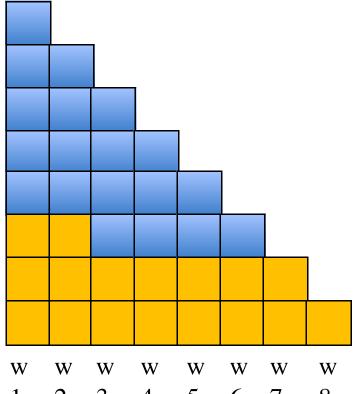
- For each higher $row^4 in^5 sequence$
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



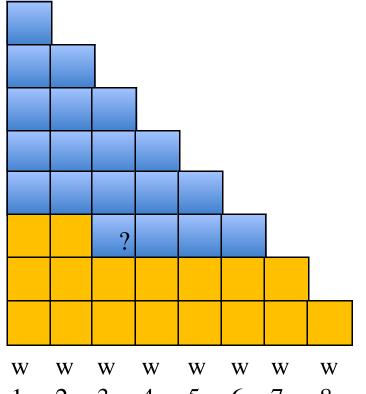
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



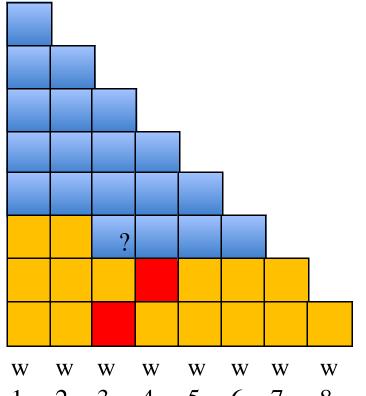
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



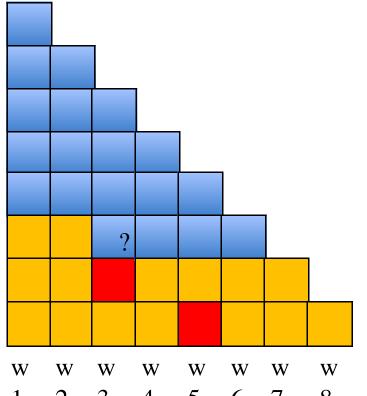
- For each higher $row^4 in^5 sequence$
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



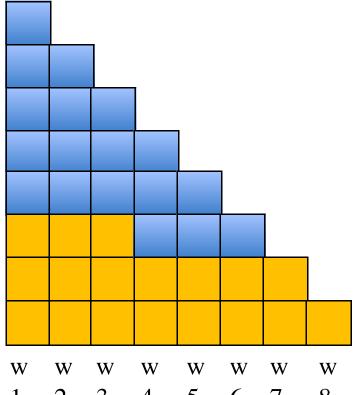
- For each higher $row^4 in^5 sequence$
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



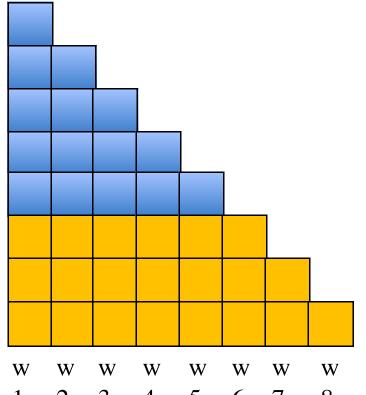
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



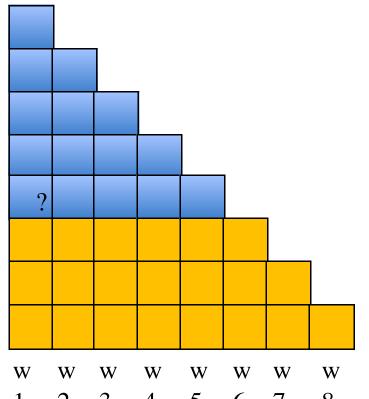
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



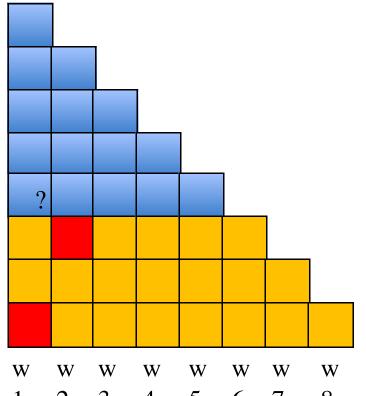
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



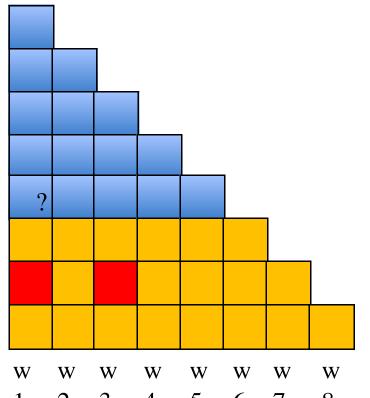
- For each higher $row^4 in^5 sequence$
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



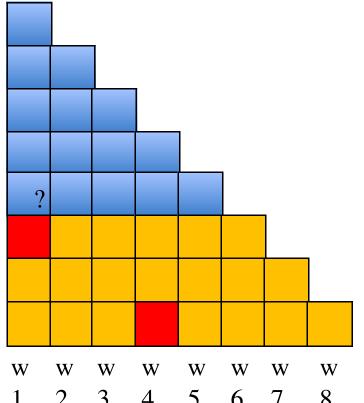
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



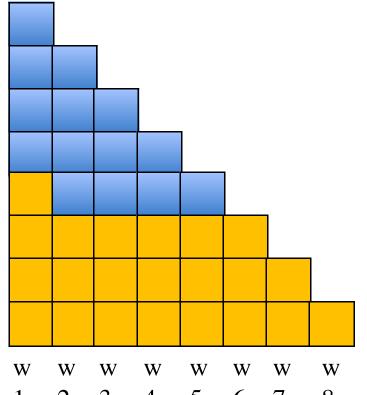
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



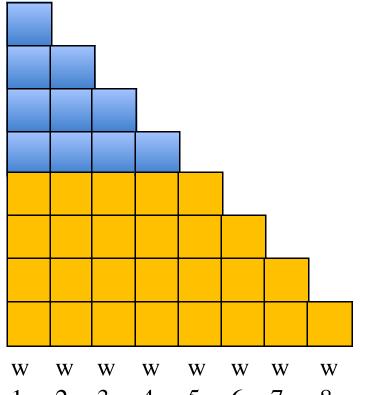
- For each higher $row^4 in^5 sequence$
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



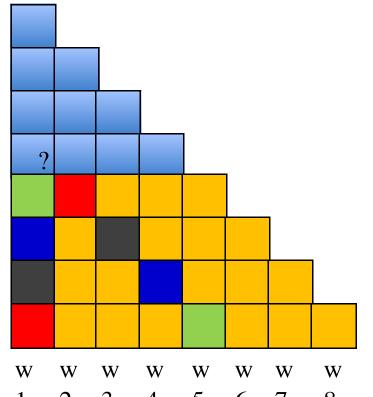
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



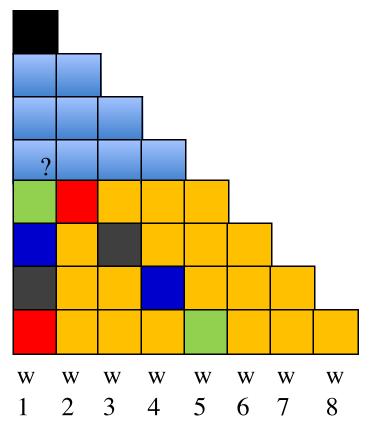
- For each higher $row^4 in^5 sequence$
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



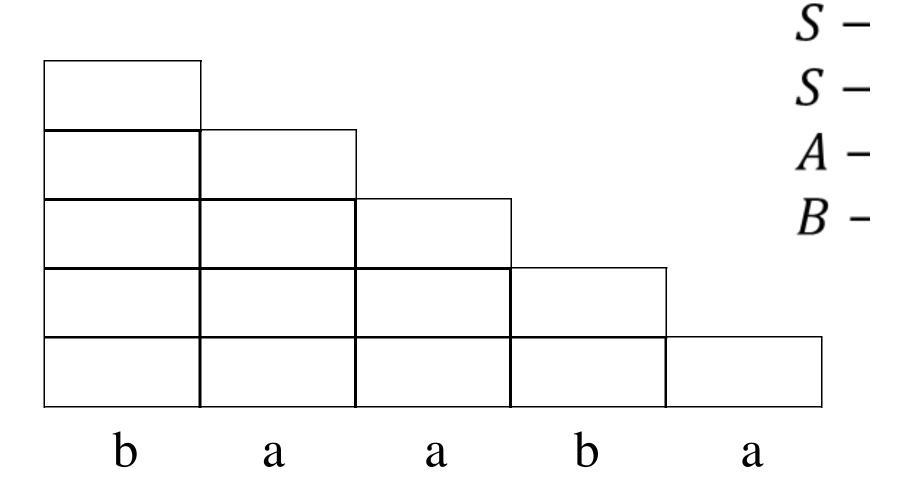
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



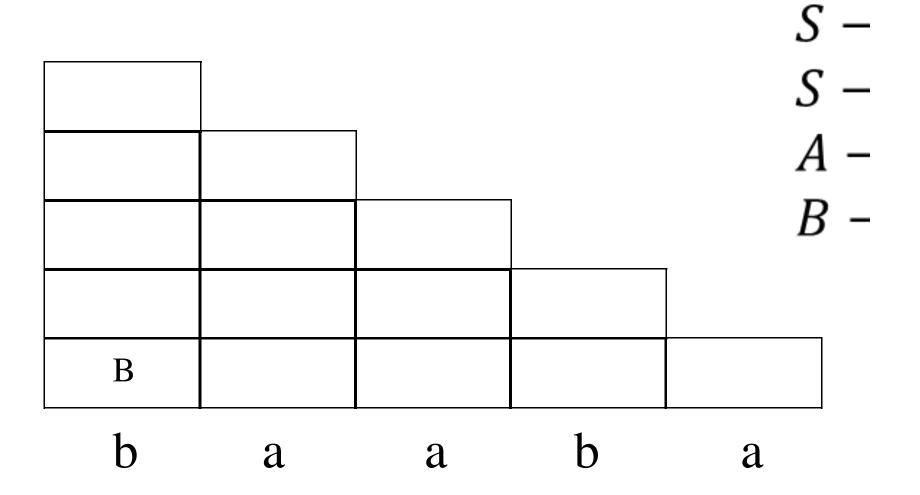
- For each higher row in sequence
 - For each block
 - For each pair of lower nodes that can span the entire section of words represented by the block
 - Identify any rules that produce any combination of NTs for the



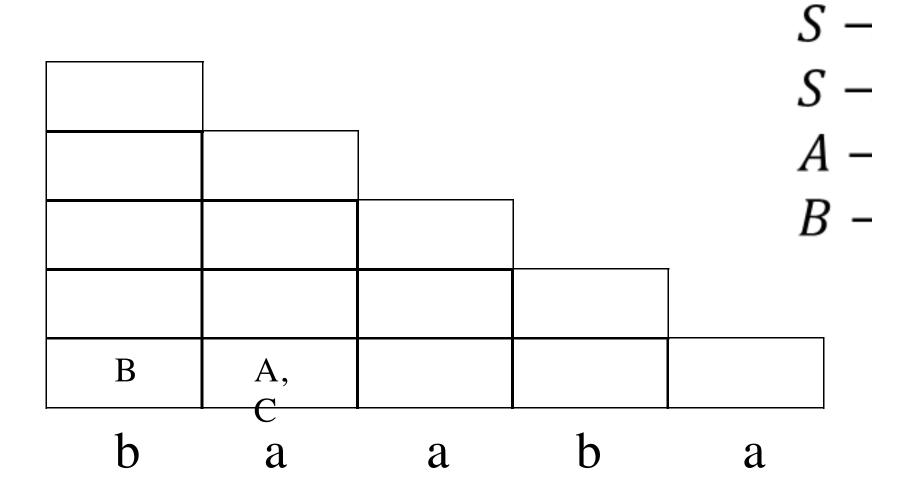
• If, eventually, the top box is populated, the string belongs to the language



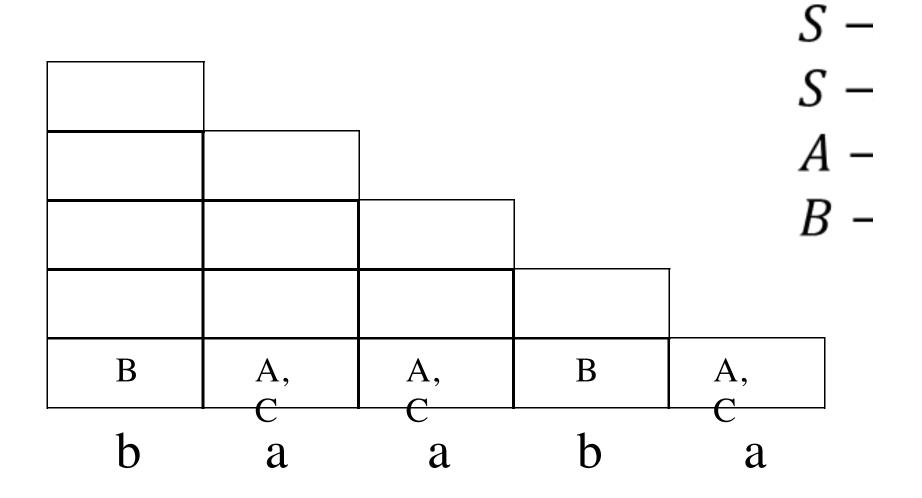
• From slides I found on a UC Davis website



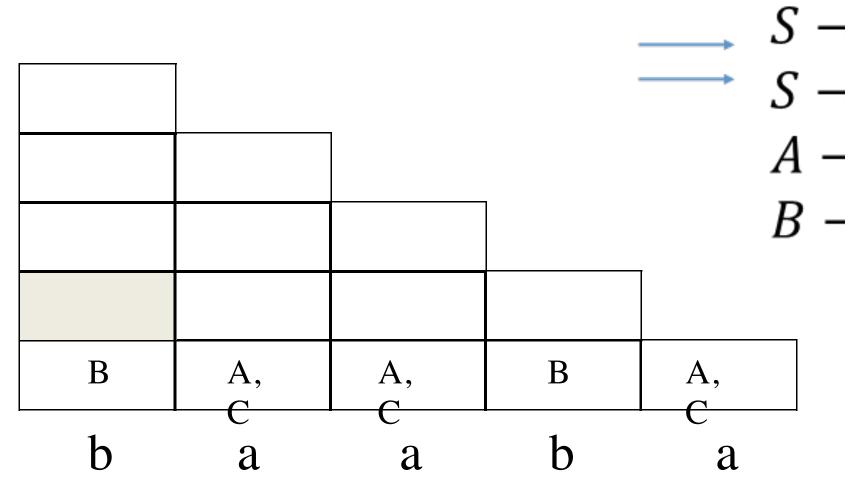
• From slides I found on a UC Davis website



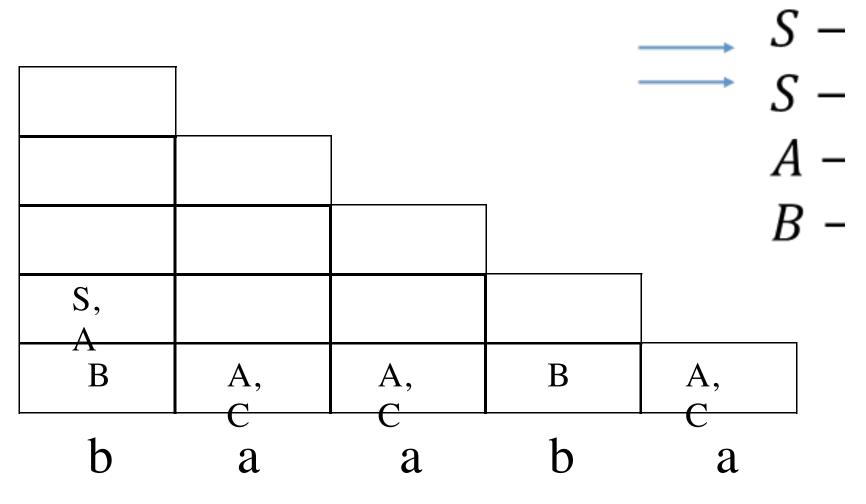
• From slides I found on the UC Davis website



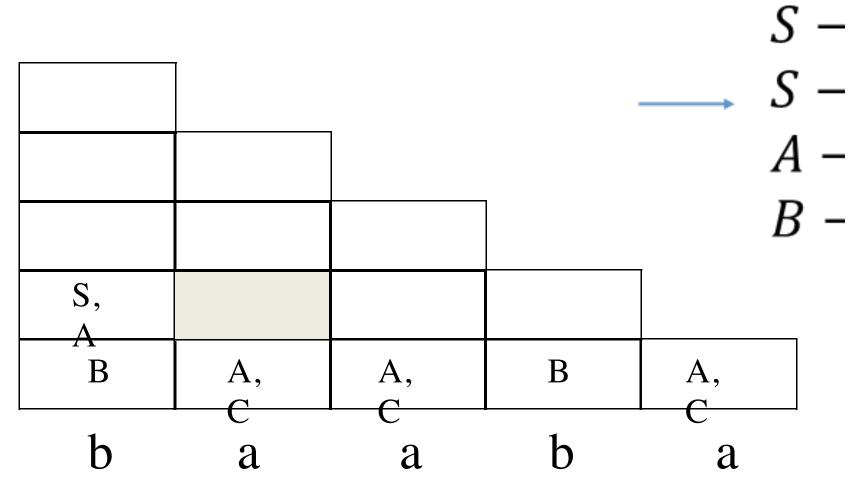
• From slides I found on the UC Davis website



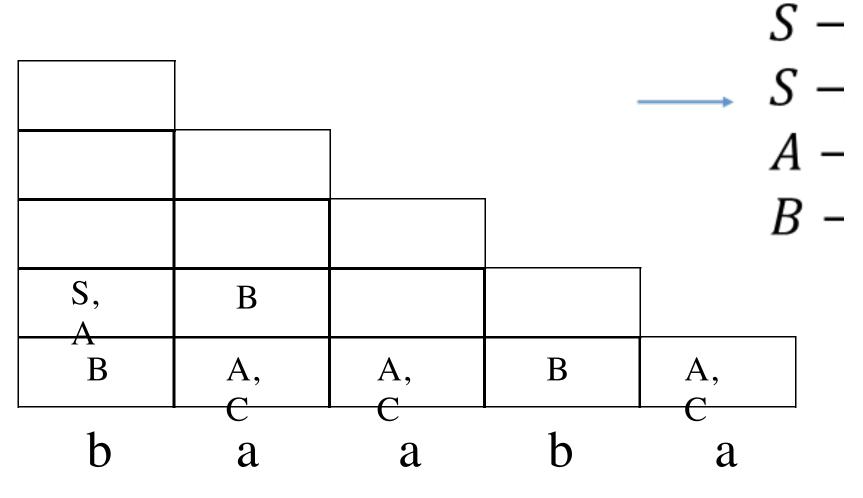
- Possible productions: **B**A, **B**C
- We find two rules for this



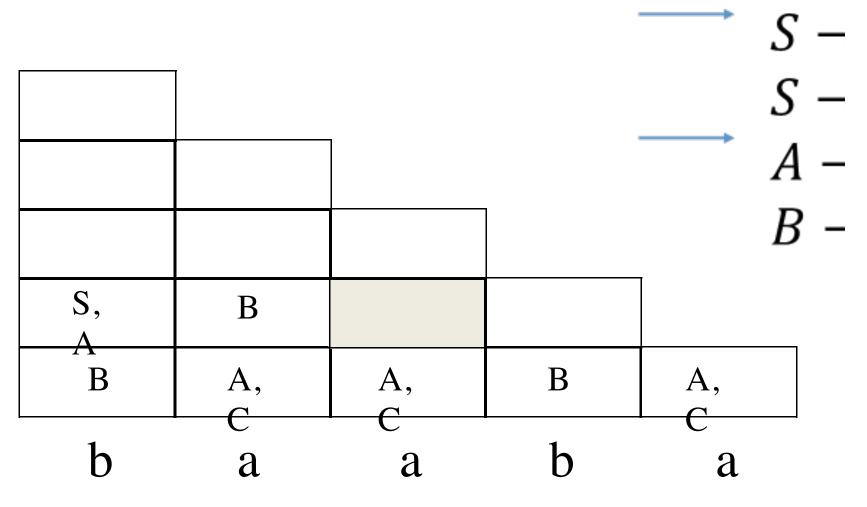
- Possible productions: **BA**, **BC**
- We find two rules for this



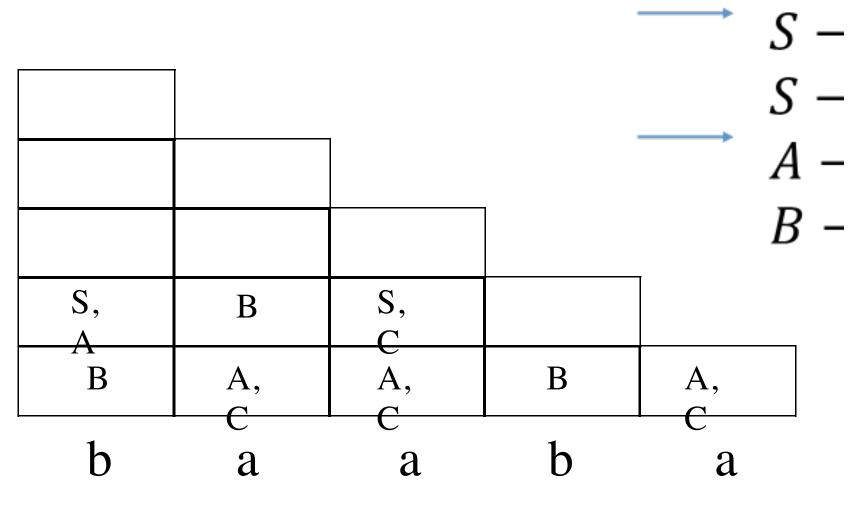
- Possible productions: AA, AC, CA, CC
- One rule



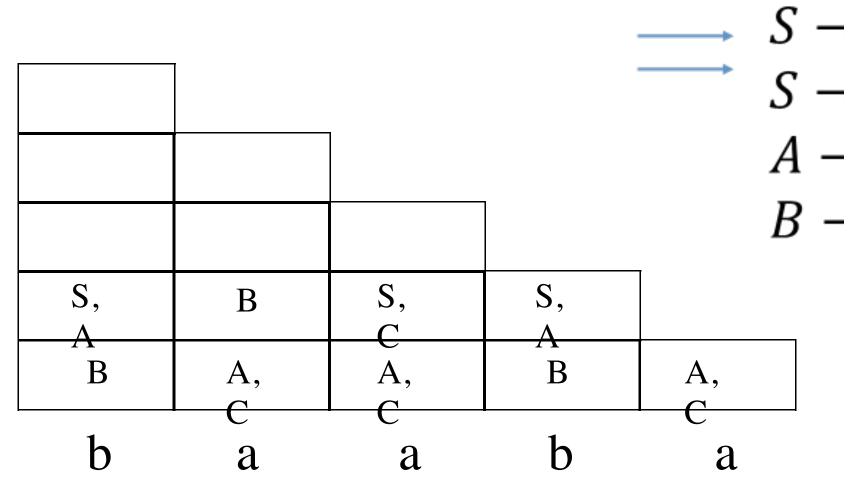
- Possible productions: AA, AC, CA, CC
- One rule



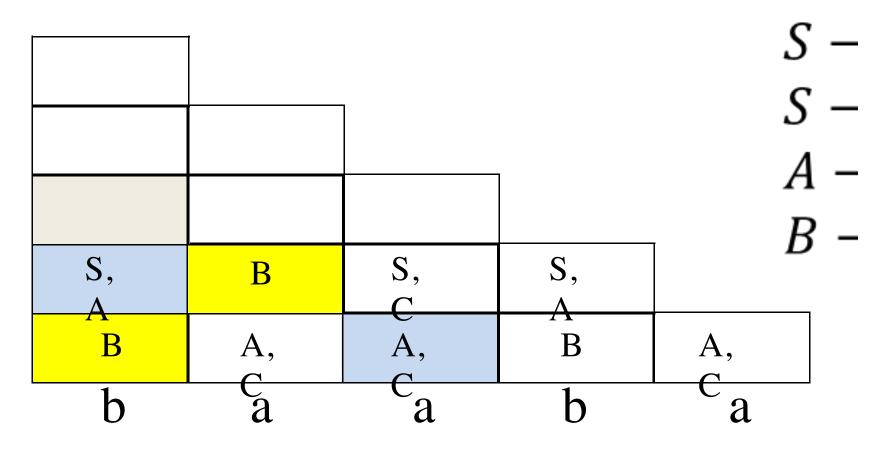
- Possible productions: A B, C B
- Two rules (note both produce A B)



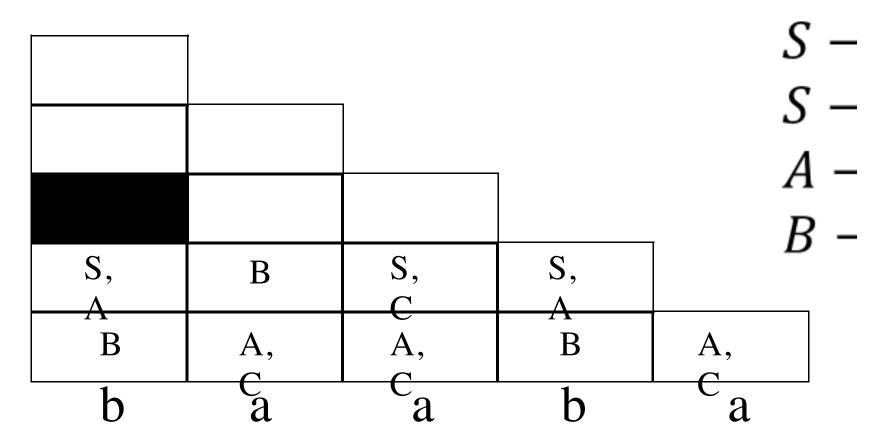
- Possible productions: A B, C B
- Two rules (note both produce A B)



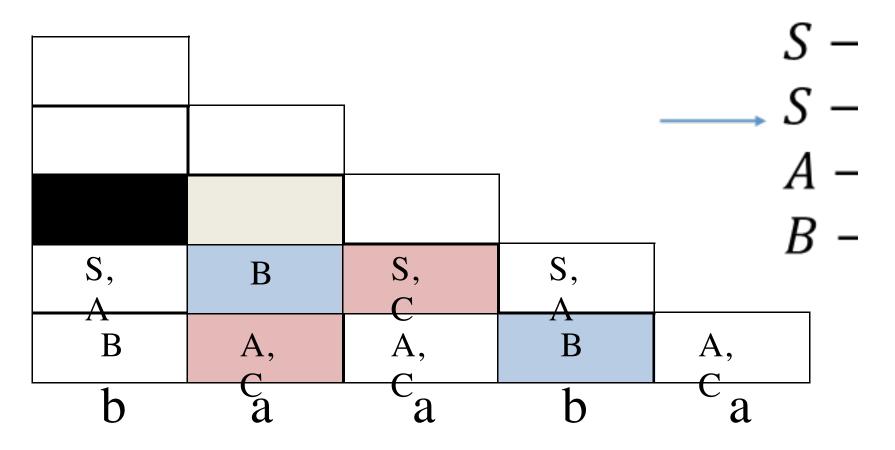
- Possible productions: **B**A, **B**C
- Two rules



- Two combinations that work
- Possible productions:
 - B B



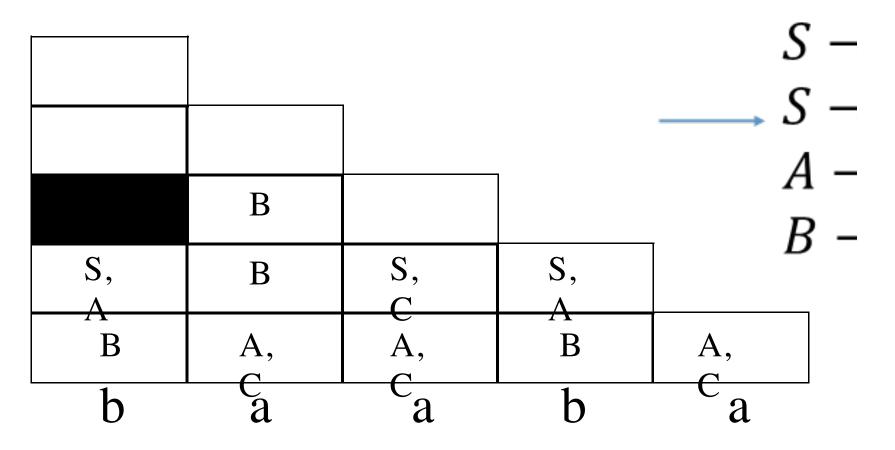
- Two combinations that work
- Possible productions:
 - B B



• <u>Possible productions</u>:

$$-AS, AC, CS, CC$$
$$-BB$$

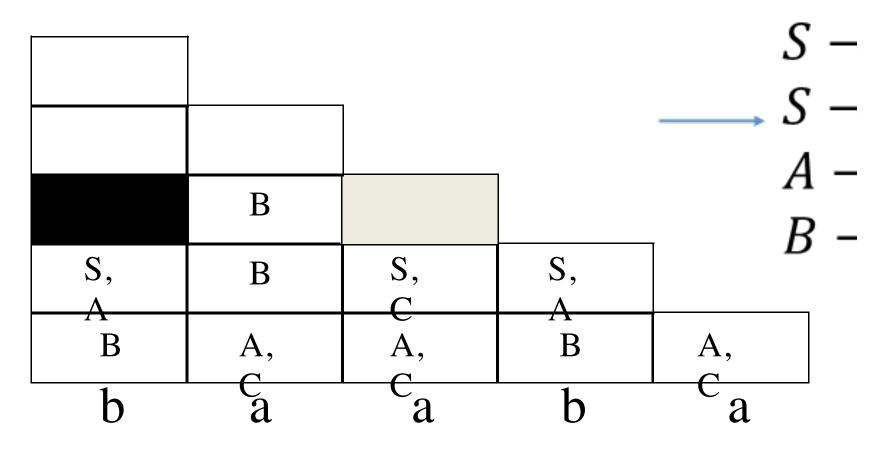
Anta ana rula



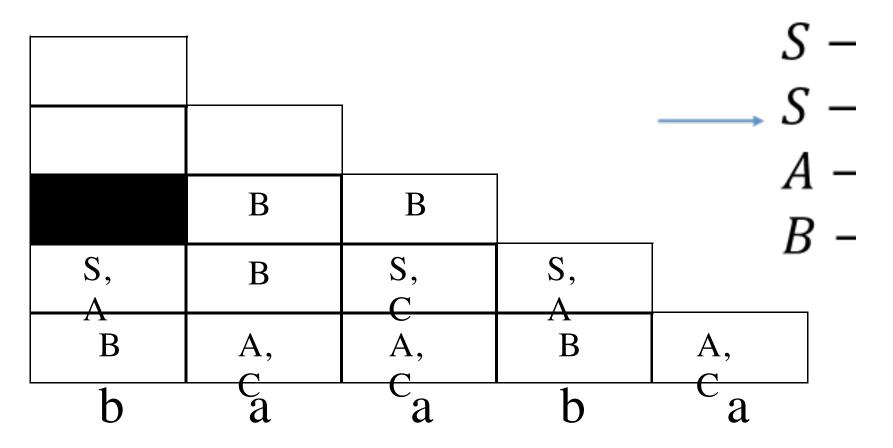
• <u>Possible productions</u>:

$$-AS, AC, CS, CC$$
$$-BB$$

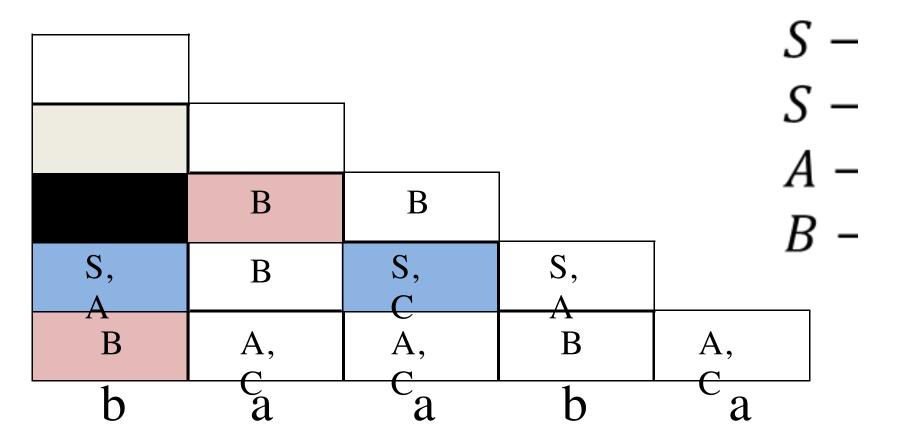
Anta ana rula



- Possible productions:
 - AS, AA, CS, CA
 - SA, SC, CA, CC
 - Anly and rula

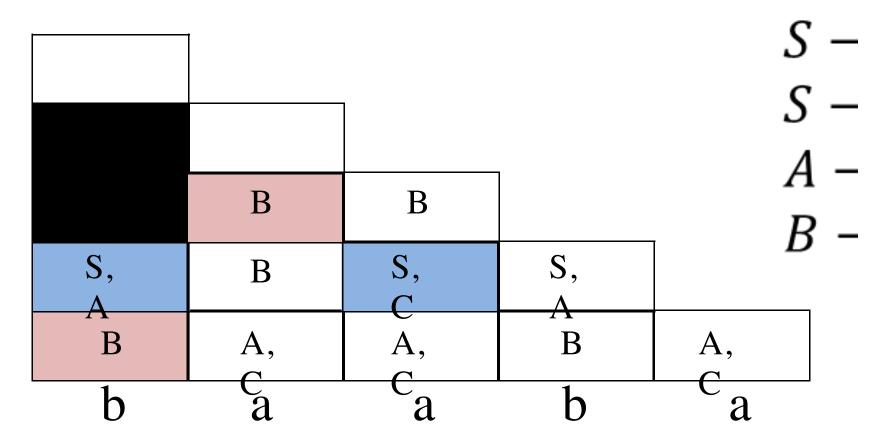


- Possible productions:
 - AS, AA, CS, CA
 - SA, SC, CA, CC
 - Anly and rula



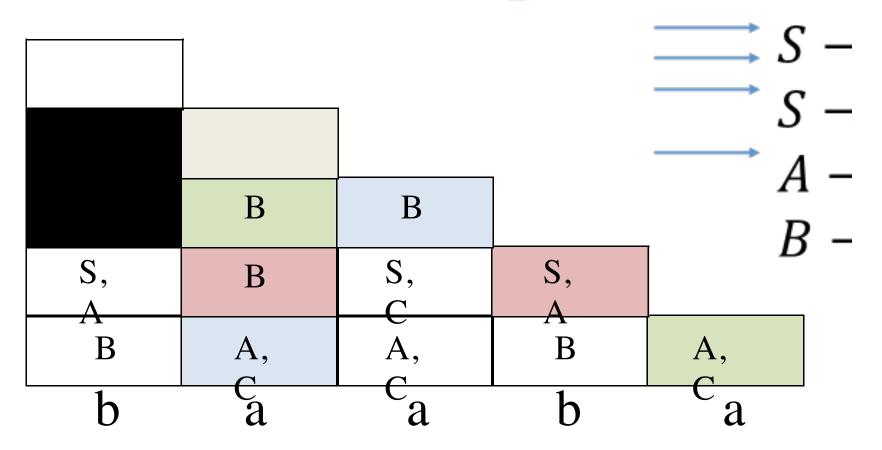
- Possible productions:
 - SS, SC, AS, AC
 - BB

No rula for any of these



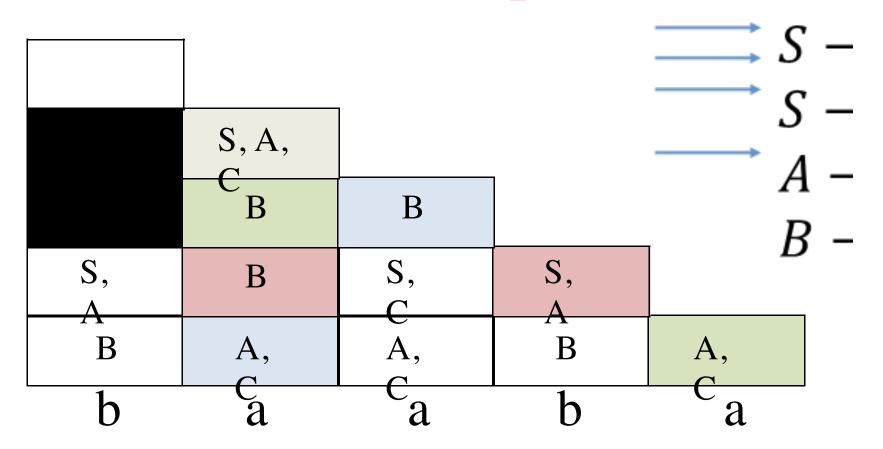
- Possible productions:
 - SS, SC, AS, AC
 - BB

No rula for any of these

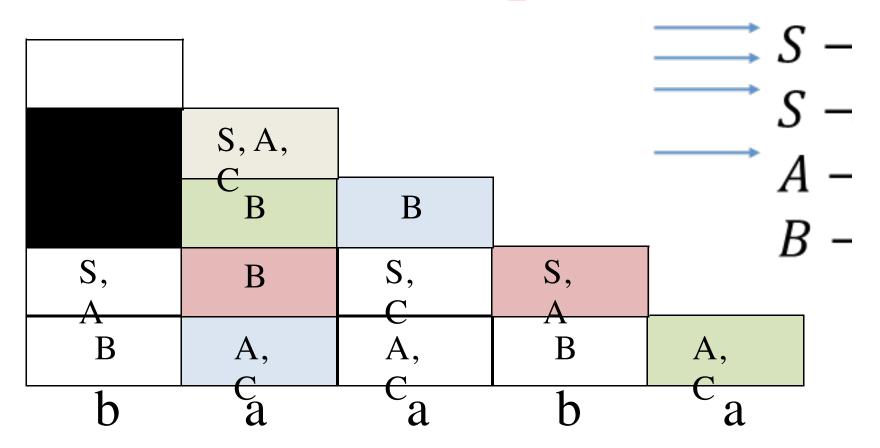


- Possible productions:
 - -AB, CB
 - BS, BA
 - RA RC

.



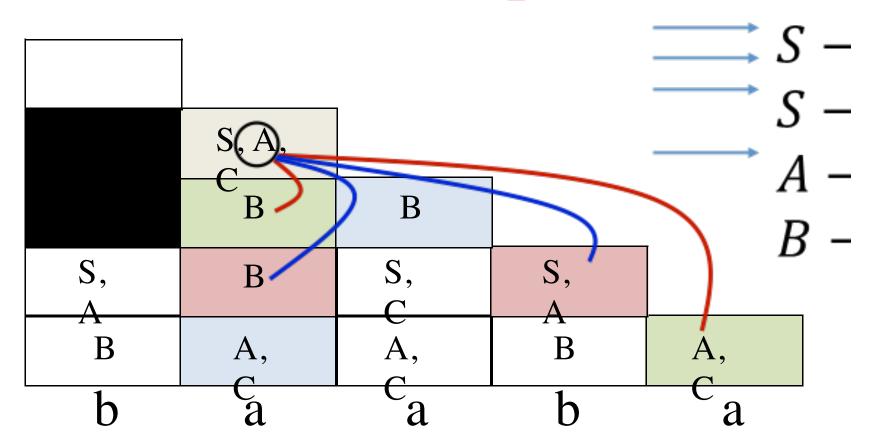
- Possible productions:
 - -AB, CB
 - BS, BA
 - RA RC



• Possible productions:

IS THIS PARSE UNAMBIGUOUS?

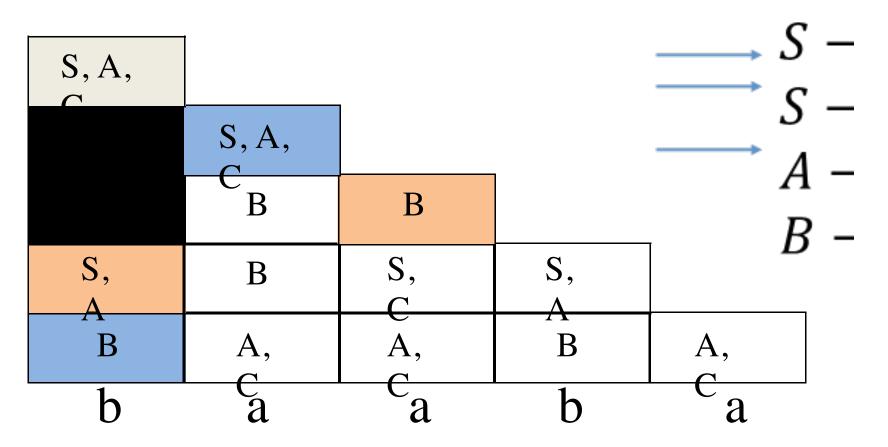
- -AB, CB
- BS, BA
 - RA RC



- Possible productions:
 - -AB, CB
 - BS, BA
 - RA RC

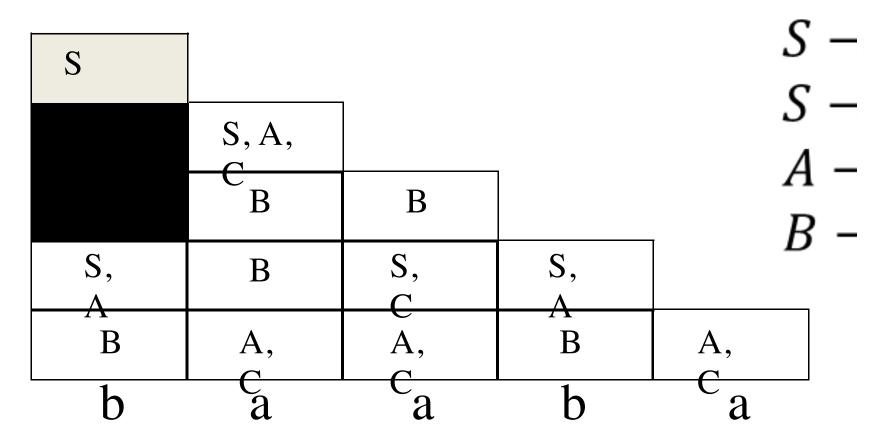
IS THIS PARSE UNAMBIGUOUS?

Possibly not... (can't be sure yet)



- Possible productions:
 - BS, BA, BC
 - -SB, AB

Thras rules annly!

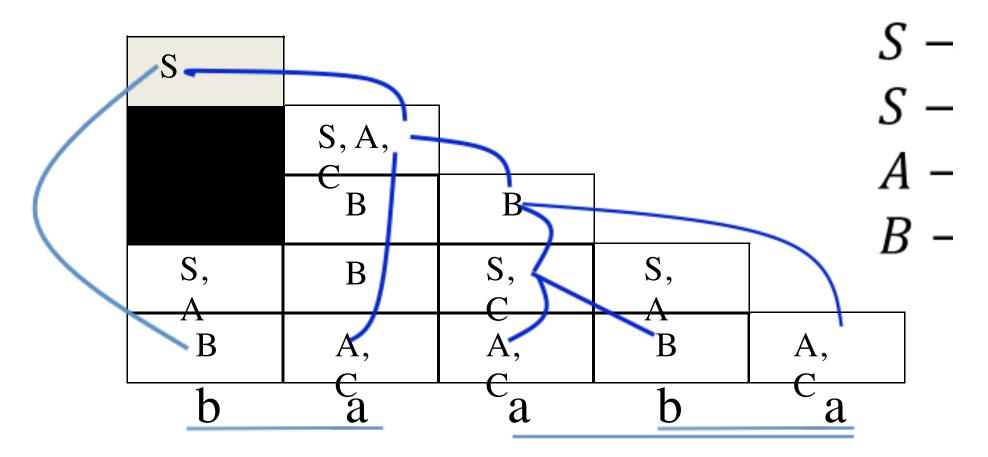


- Check: Does the top box have S
 - Remove other entries

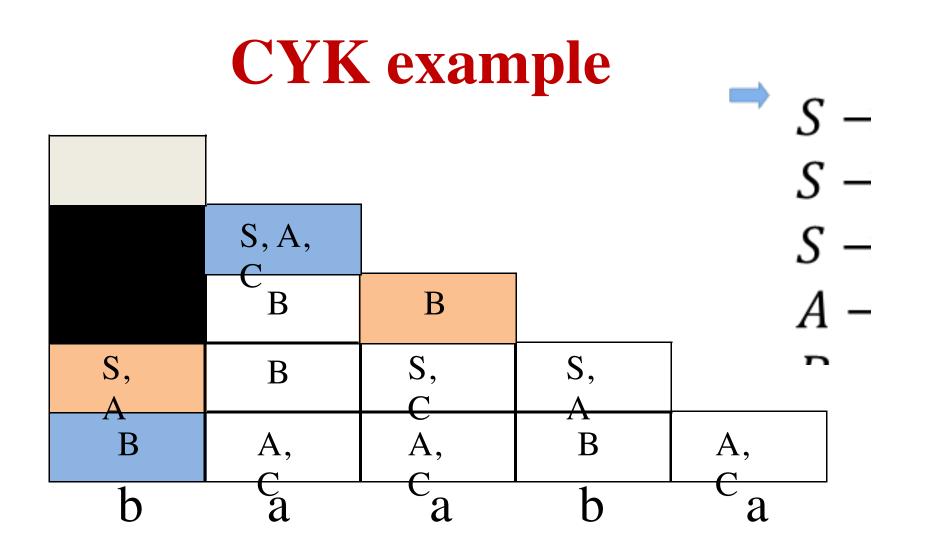
String does belong to the language

But how to find constituents?

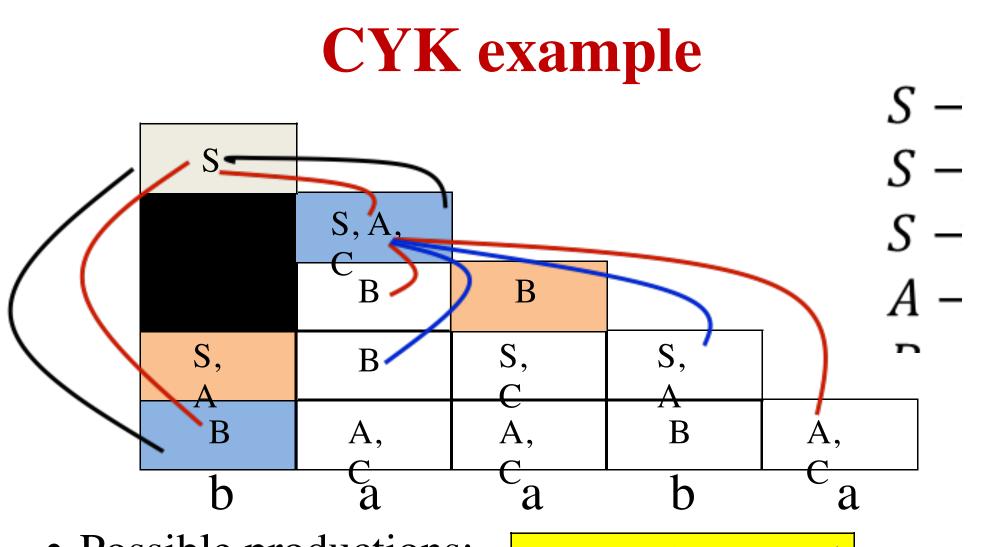
- Need the parse tree for this
- At each box,
 - For each stored NT
 - keep track of not just the non-terminals, but the child nodes
- Forward trace from root to find the parse tree – The parse tree provides the constituents



- Resulting parse
 - Constituents can be found from it
- Tracina the narce tree is nossible because this is an



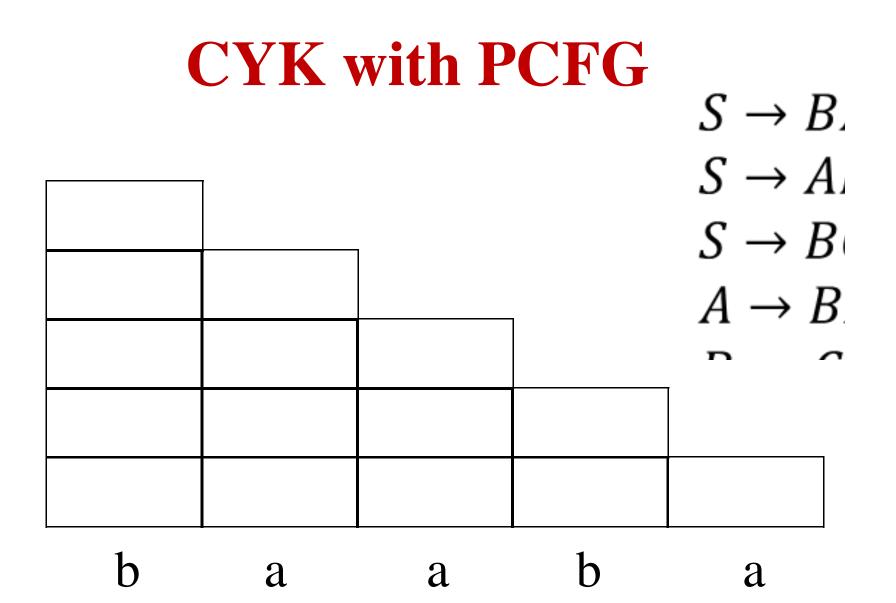
Now add another rul



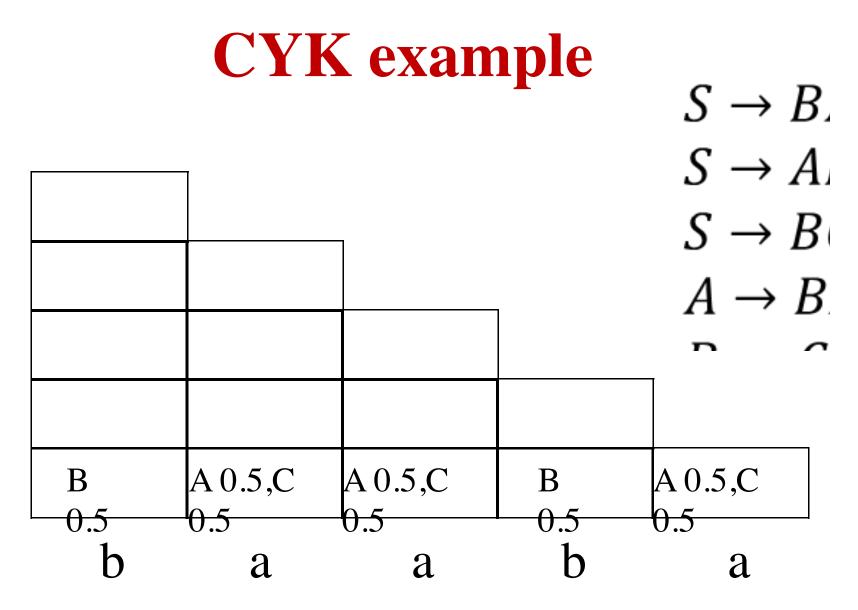
- Possible productions:
 - BS, BA, BC
 - SB, AB
- Multiple S rules apply

- Not an unambiguous parse!
- Many possible parses

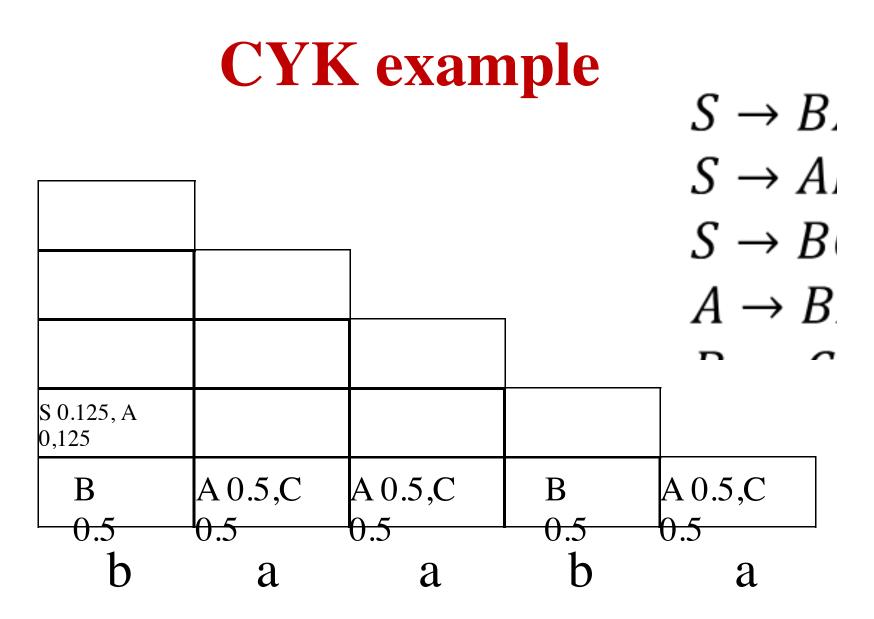
How do we choose the best parse?

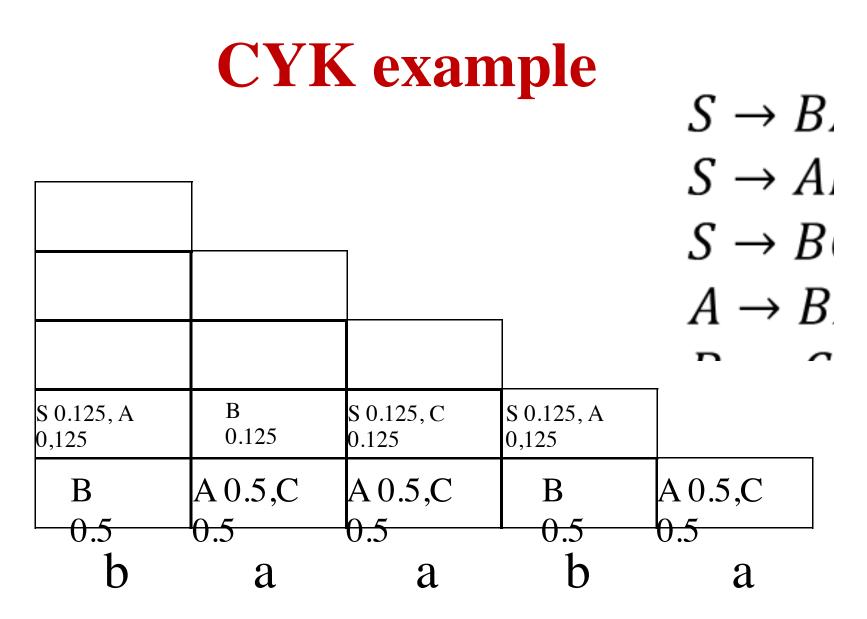


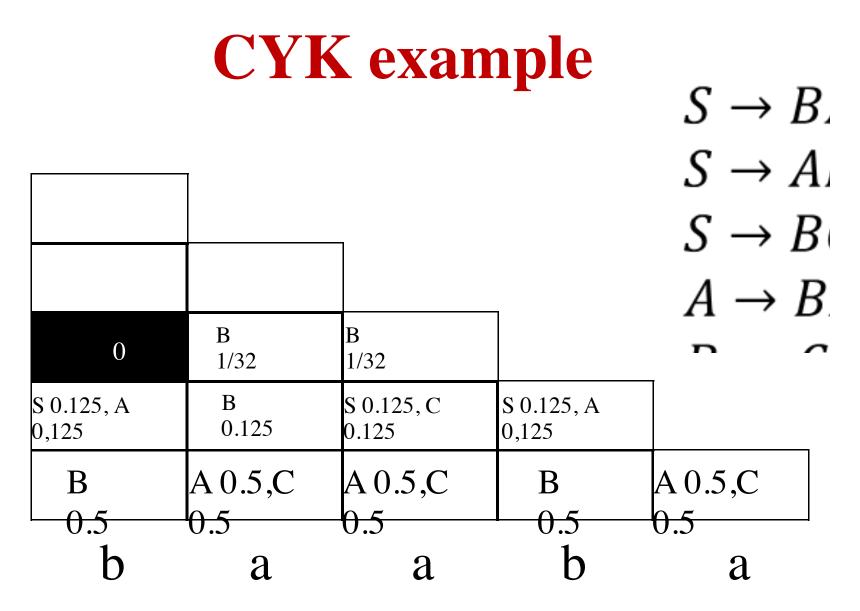
- Rules now have probabilities
 - Note, probabilities of all expansions of any

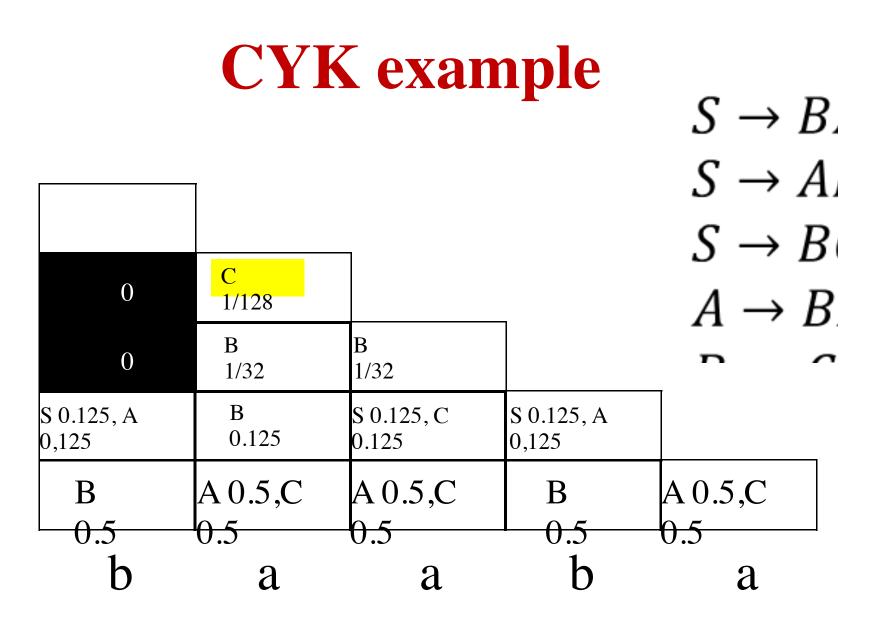


• Keep track of probabilities of rules applied

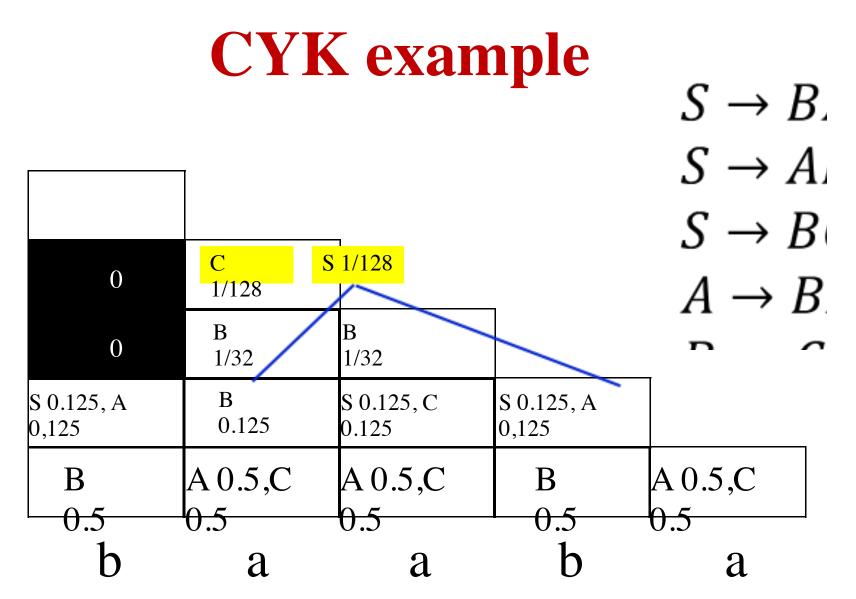


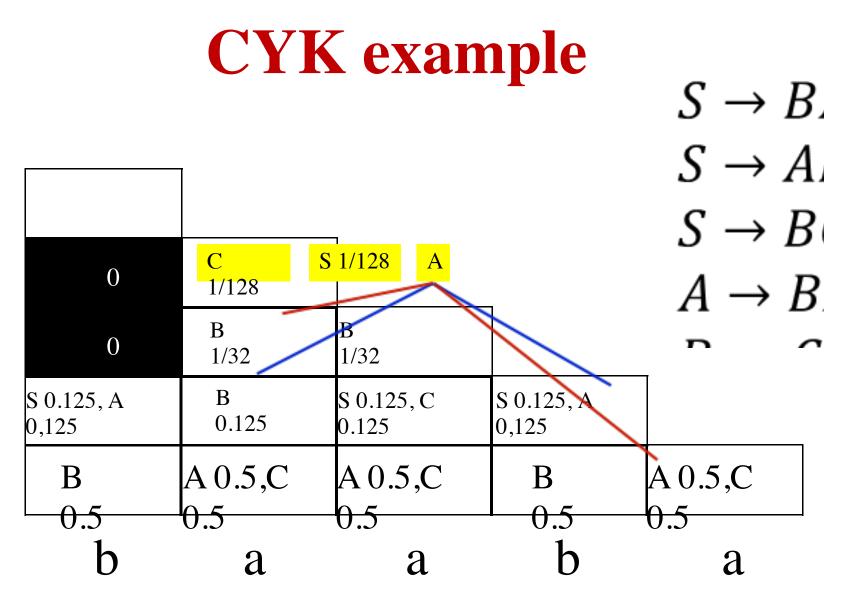


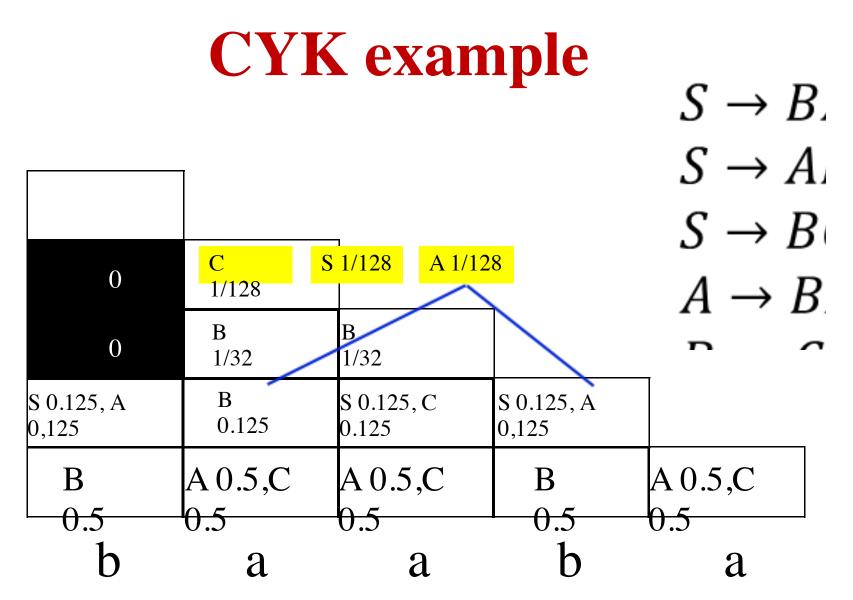


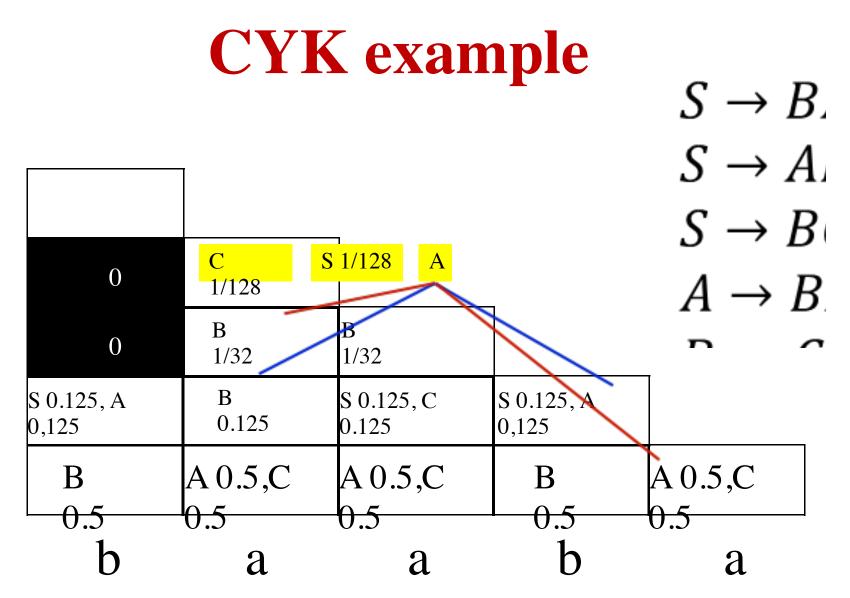


CYK example $S \rightarrow B_{\perp}$ $S \rightarrow A$ P = 0.5 * 1/64 (S- $S \rightarrow B$ >BA) $P = 0.3 \times 1/64$ (S-C 0 >AB) $A \rightarrow B$ 1/128 B 0 1/321/32S 0.125, C S 0.125, A В S 0.125, A 0.125 0.125 0,125 0.125 A0.5,CA 0.5,CA 0.5,CB B 0.50.5h a a a

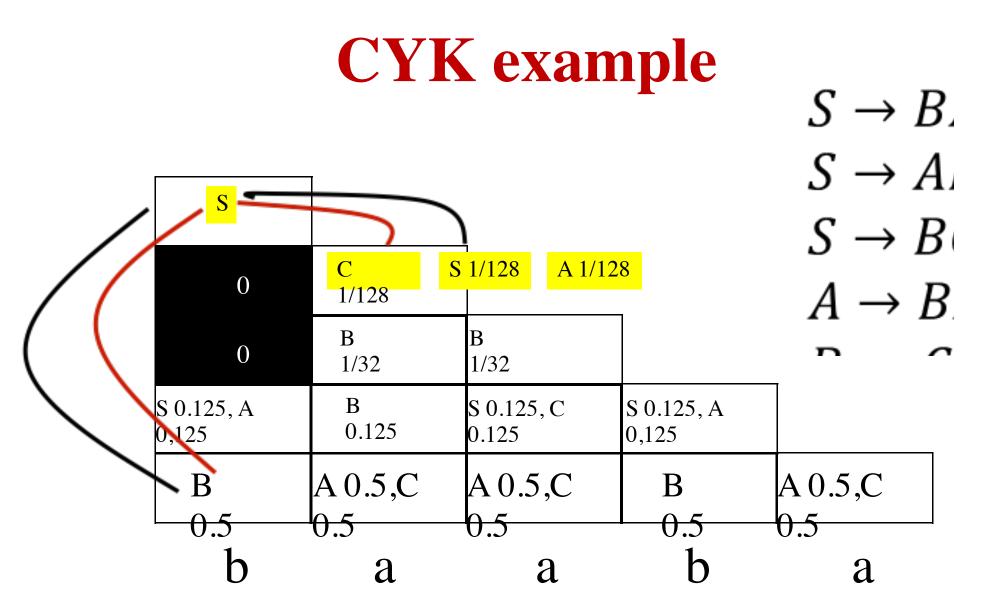


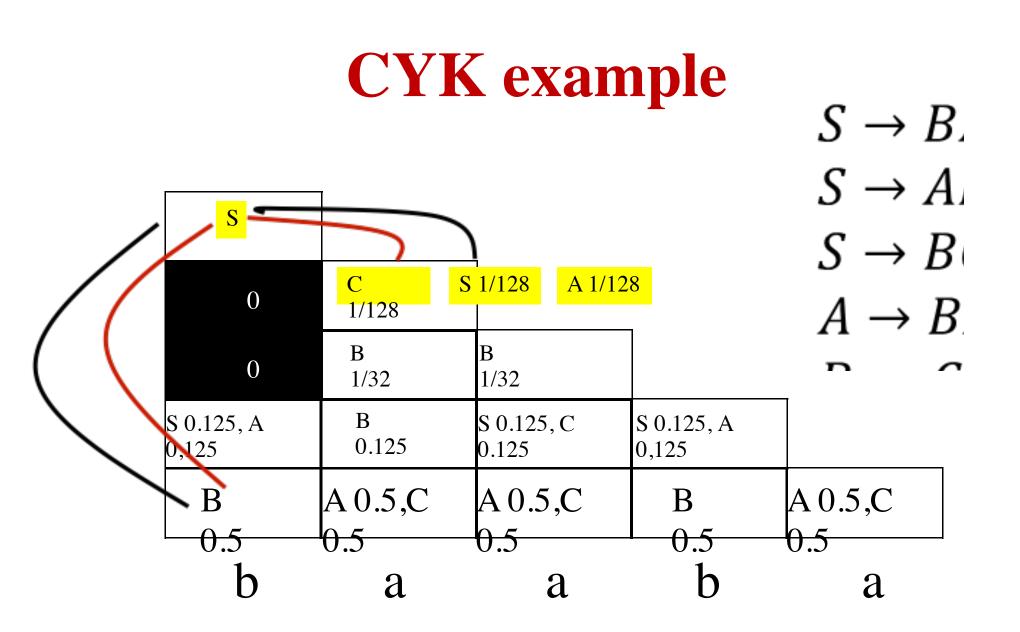




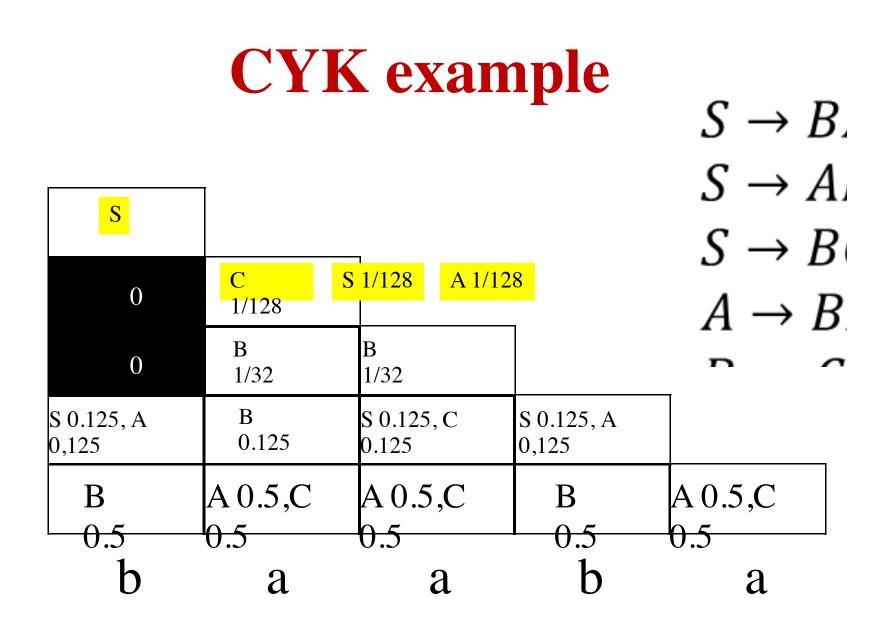


• Note: Competition happens only between different expansions of the *same non-terminal*





• The same algorithm also applies to *weighted* PCFGs



.

• What is the cost of parsing a string of N words with R rules?

CYK, PCFG and Structured prediction..

- The task we just performed..
- Assigning probabilities to entries from a very large set
 - Modelled a probability distribution over all possible parse trees
 - Selected the most probable parse
 - (How would you find the second most possible?)
- Structured prediction

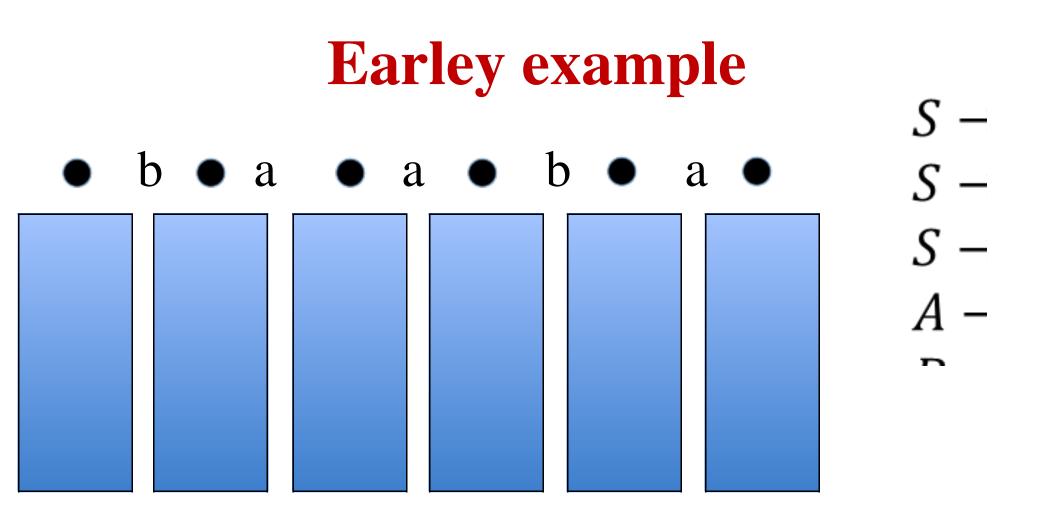
Parsing CFGs

- The CYK parser is actually very expensive and inefficient
 - Nobody really uses it anymore except for very simple task
- A more efficient method is the *Earley* parser
 Jay Earley, 1968, CMU
 - Then he gave it all up and became a shrink investigating his "inner critic"..

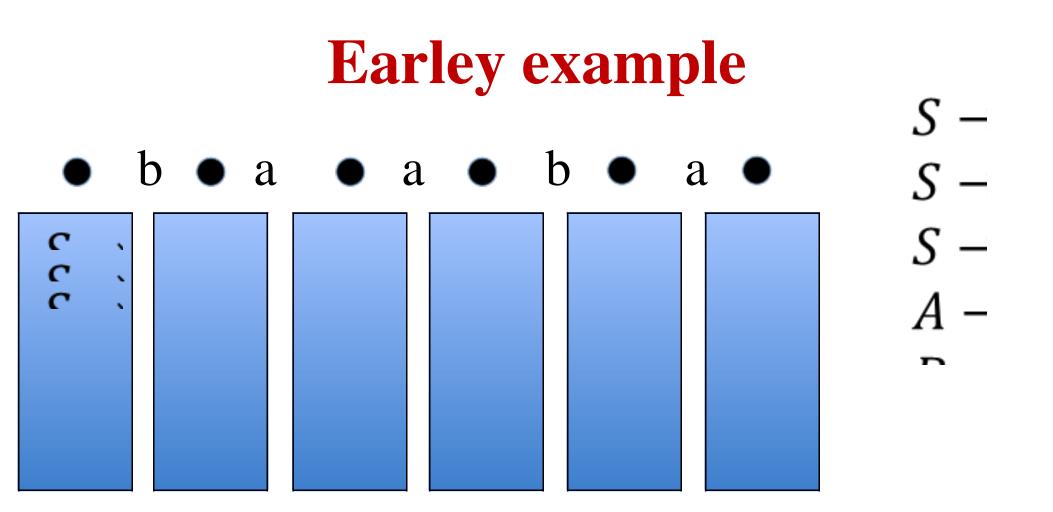
– It's a very complicated looking algorithm

CYK vs Earley

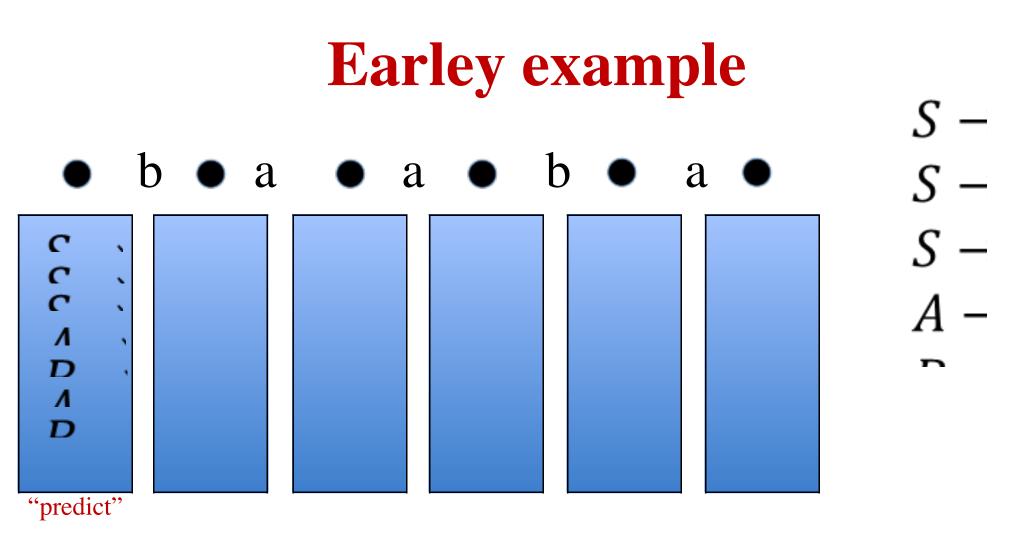
- CYK: Bottom up
 - Build all possible* trees that can be built from the word sequence
 - Find which conforms to grammar
 - *Check conformance to grammar while building trees on words, to keep restrict computation
- Earley: **Top down**
 - Build all possible* trees that can be produced by grammar



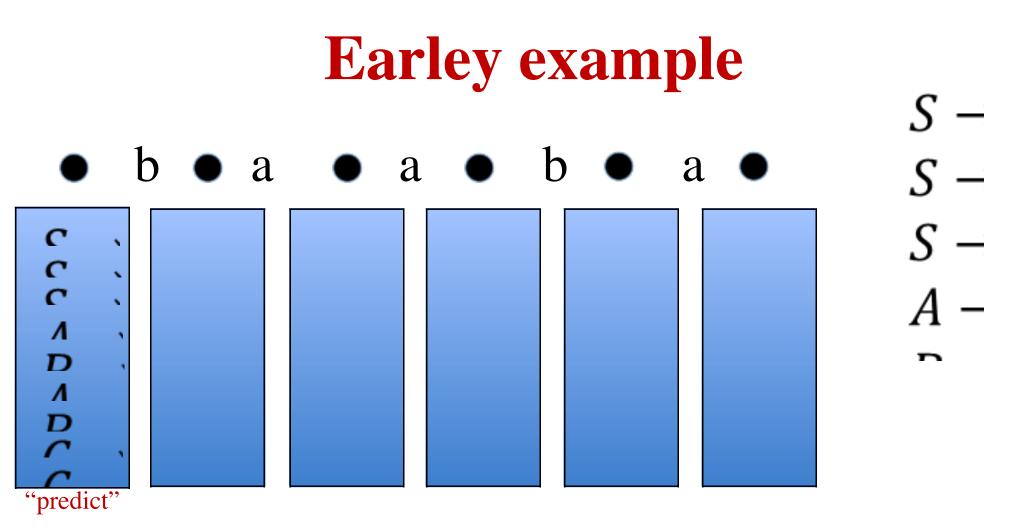
- We will maintain a list of partially expanded rules at each of the shown locations
 - We will go left to right



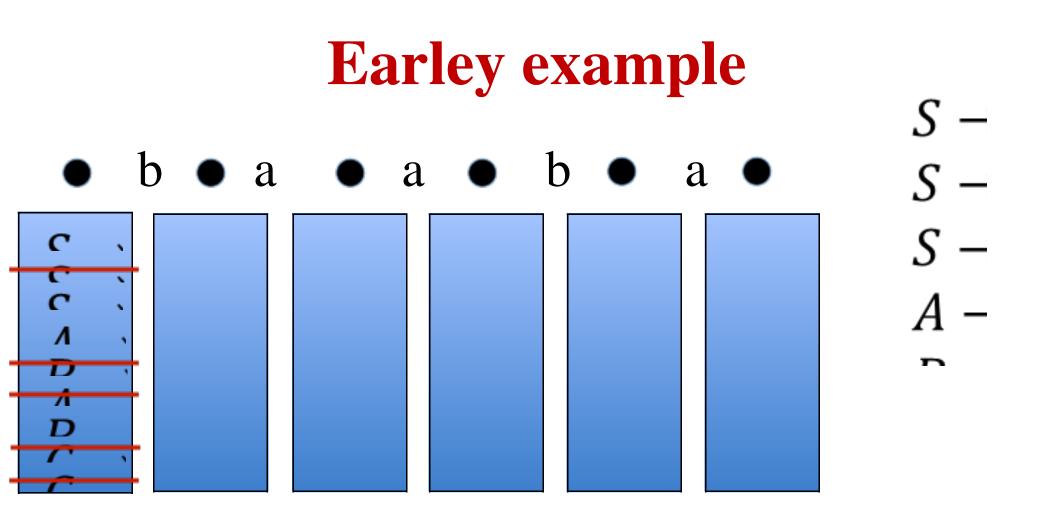
• The star indicates the position until which we've successfully built a constituent



- The first symbols are A and B. Expand them
 - Include all possible expansions of A and B in one pass

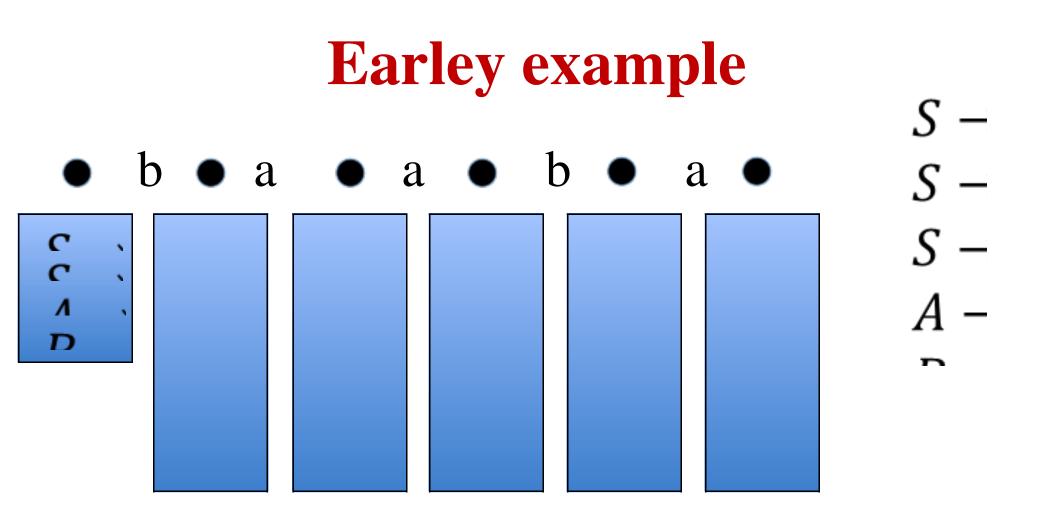


- We now have a new non-terminal C. Expand it
 - Don't revisit already-expanded NTs or you'll have an infinite loop

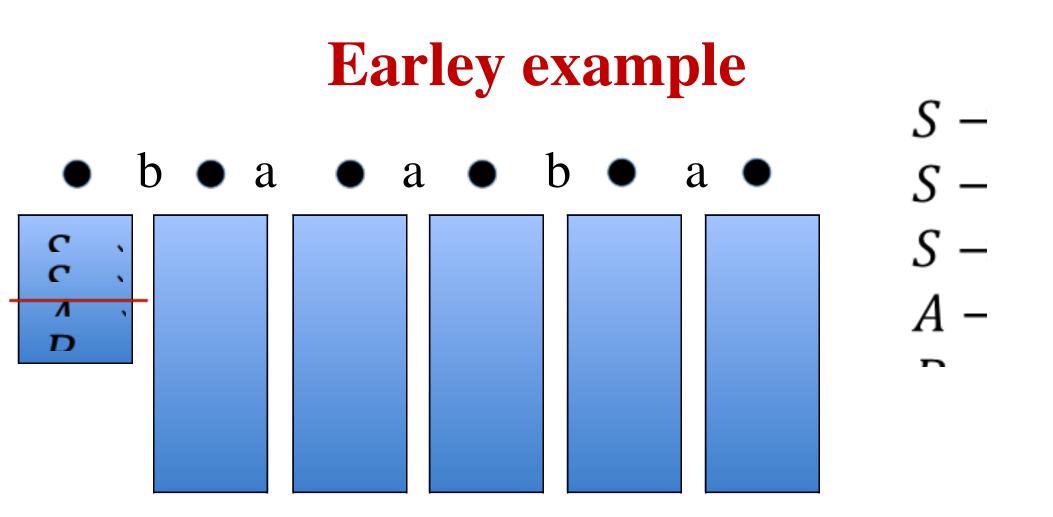


• Only one of the terminal-producing rules is valid for the upcoming symbol (b)

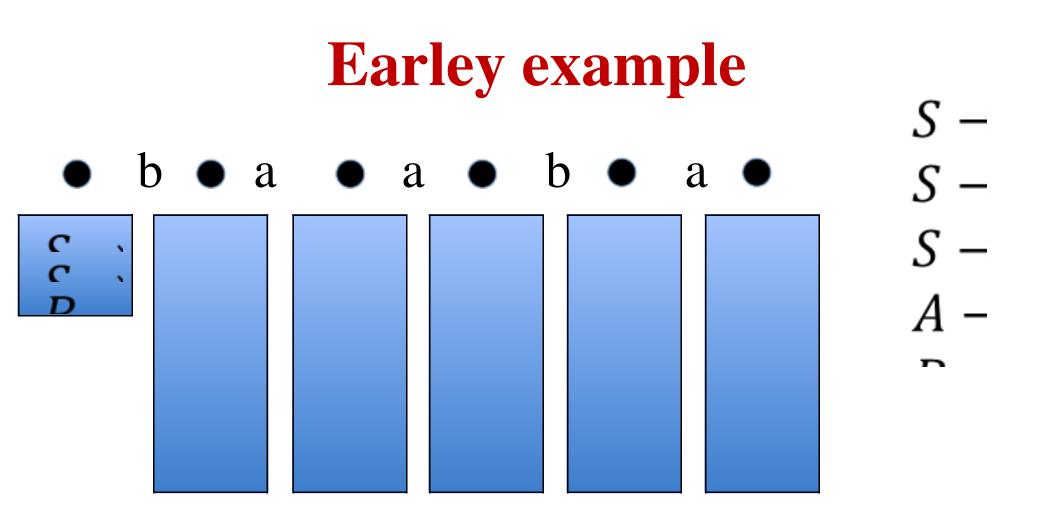
– Retain it and its predecessors. Kill all the rest



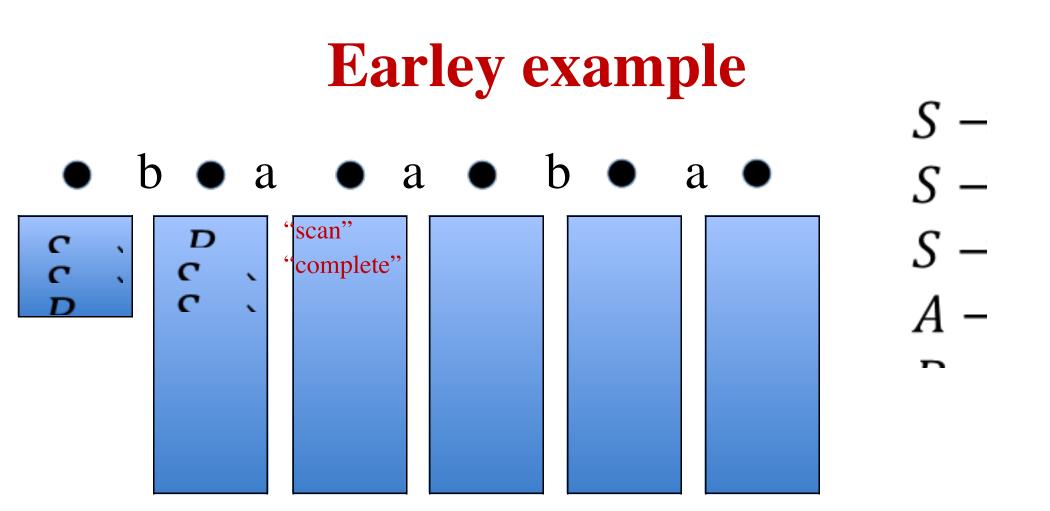
- Only one of the terminal-producing rules is valid for the upcoming symbol (b)
 - Retain it and its parents. Kill all the rest



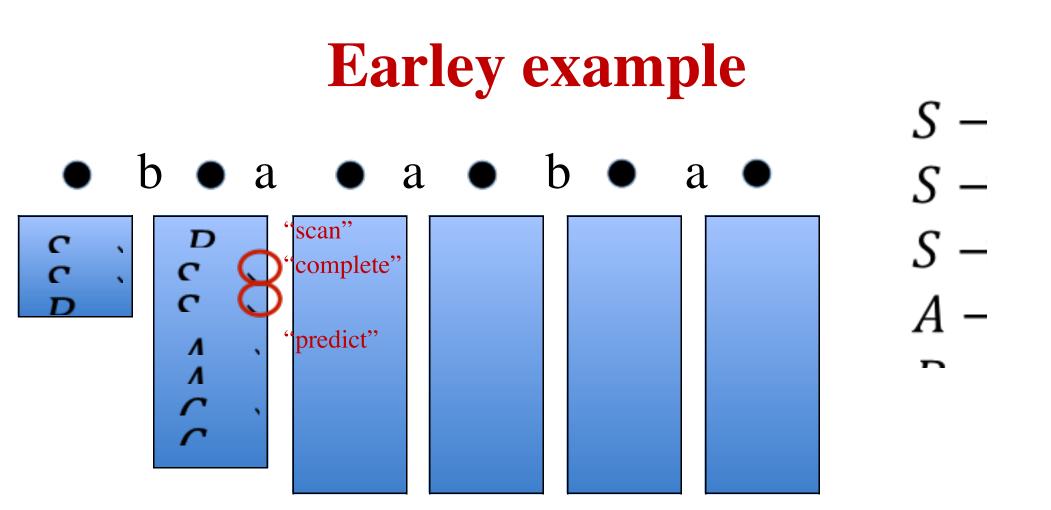
• Can also kill orphaned rules that don't lead to "S"



• Can also kill orphaned rules that don't lead to "S"

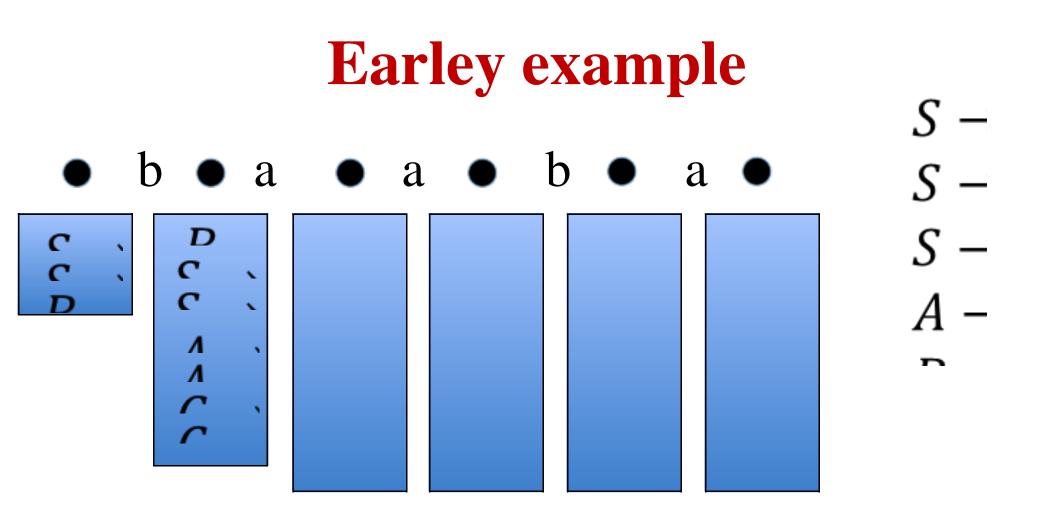


- "Scan" the "b": Move the terminal rules that produce b over to the second column
 - Move the star to show "b" is consumed



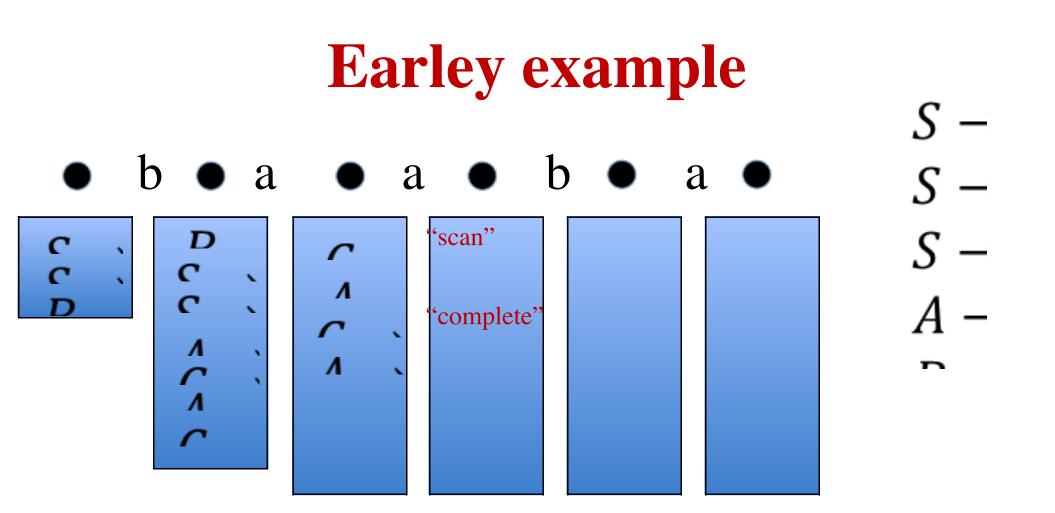
• Recursively expand the first NT in each of the rules until we get to terminals

- "Scan" their expansions to determine if any of them

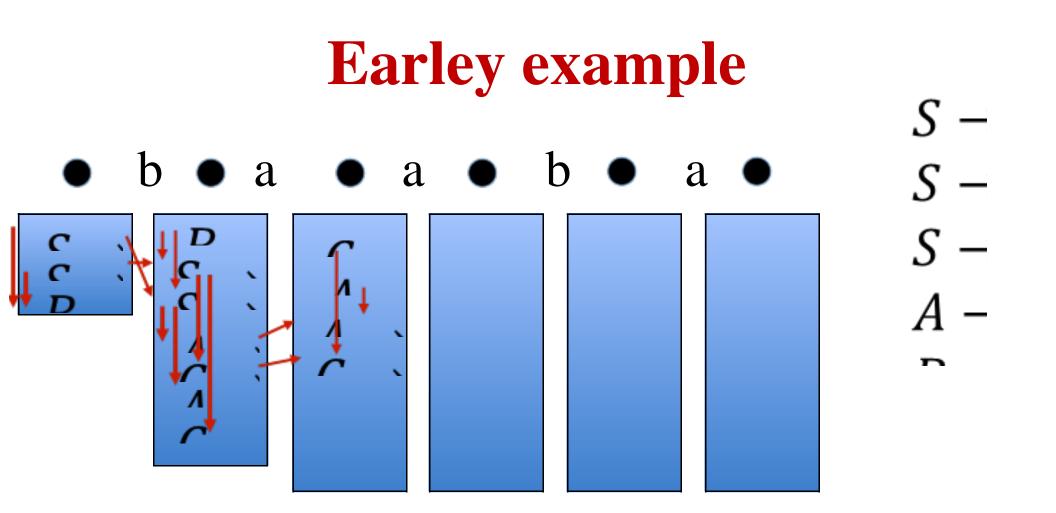


• Recursively expand the first NT in each of the rules until we get to terminals

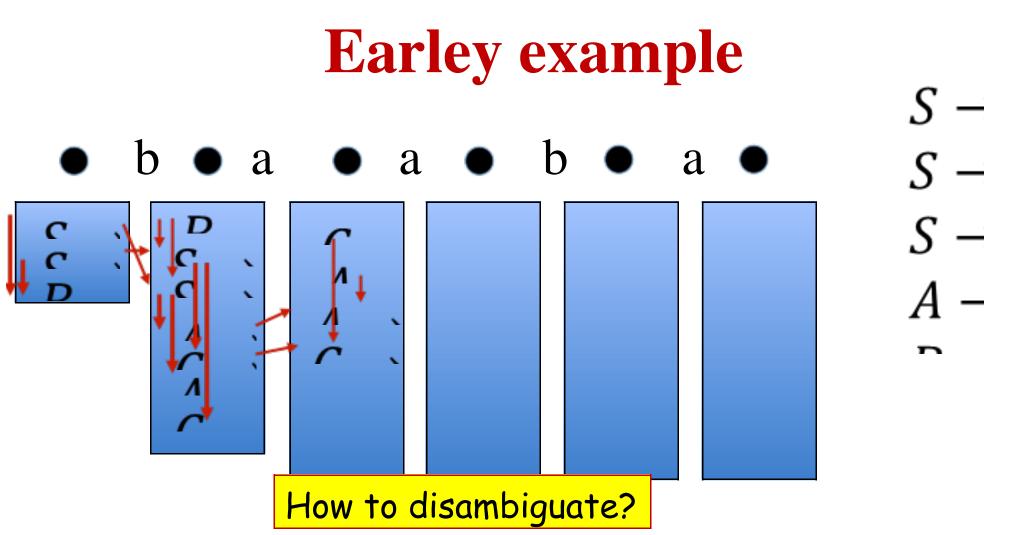
- "Scan" their expansions to determine if any of them



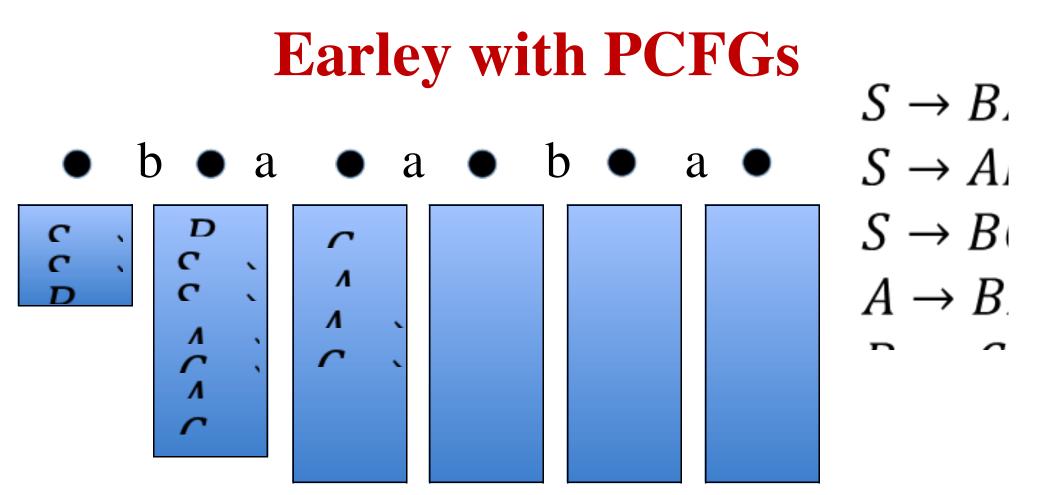
- Move the rules that can produce the "a" and their parents to the next column
 - Move the *



- For all rules, keep track of parents
- For a valid string, we will get at least one
- If was not multiple such averagions was he



- For all rules, keep track of parents
- For a valid string, we will get at least one
- If was not multiple such expensions we be



• How?

Evaluation

- Take a sentence from the test set.
- Use your parser to propose a hypothesis parse.
- Treebank gives you the correct parse.
- Precision and recall on labeled (or unlabeled) constituents.
 - Also, average number of crossing brackets (compared to correct parses) in your hypotheses.
- The training/development/test split has been held constant for a long time; possibly a cause for concern.

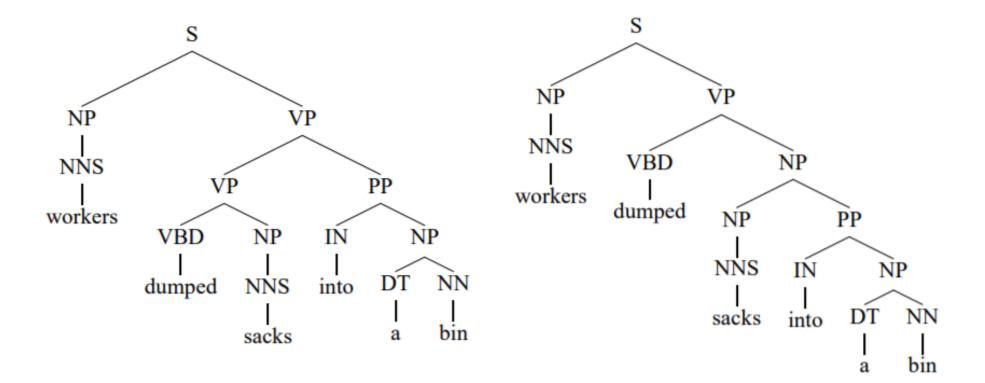
Parsing in Reality

- Generally speaking, few industrial-strength parsers actually call CKY or Earley's.
- Extensions to the basic CFG model (next topic) make reduction to CFG expensive.
- Standard techniques:
 - Beam search
 - Agenda-based approximations with pruning and/or
 A*
 - "Coarse-to-fine"

The problem

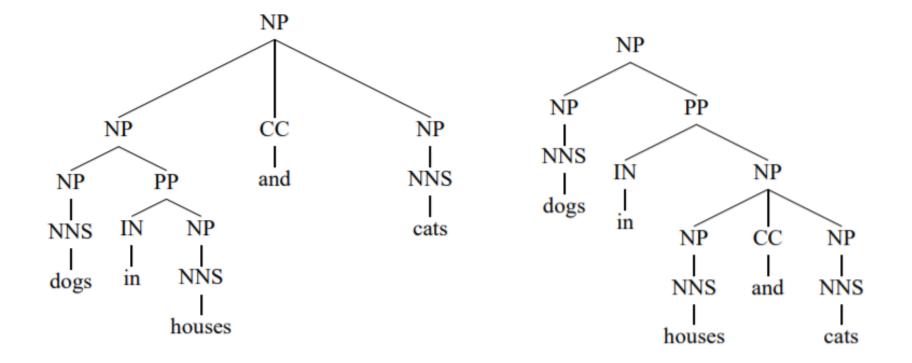
- The basic parsers are inefficient
- The PCFG structure enables us to disambiguate, but are nevertheless insufficient to actually model the language

Examples of ambiguous parses



- From Michael Collins
 - Prepositional attachment ambiguity

Examples of ambiguous parses



- From Michael Collins
 - Coordination ambiguity: Identical set of rules applied, only difference is the order

Solution: Lexicalization

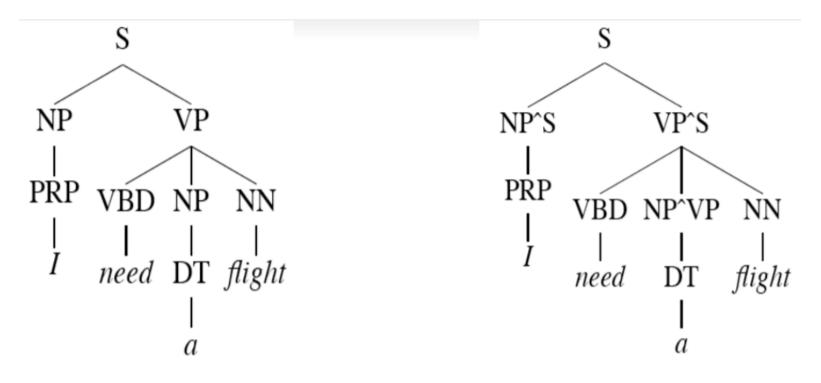
- Attach to each non-termina it can construct
 - $S \rightarrow NP VP$
 - $S(questioned) \rightarrow NP(law)$
 - Each rule now multiplies

Lexicalized Parse

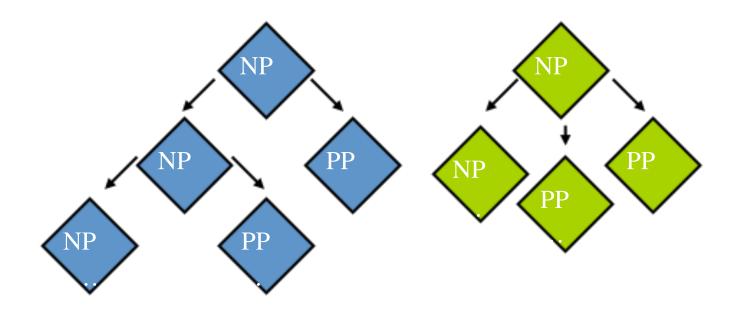


Natural language is not context independent.

- But CFGs are easy to handle
- Compromise?
- Context free grammar
 - But *parent-dependent* probabilities
 - Like an expanded markov state in Markov chains



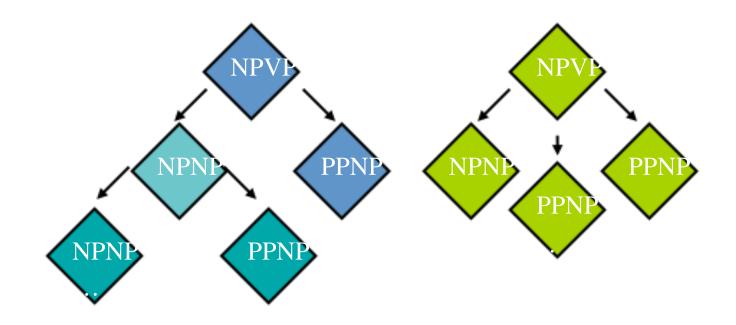
- Rules are cloned for different parents
 - Parent-specific probability distributions over expansions
 - But the actual rules remain basic CFG rules!



$NPVP \rightarrow p NPNP$

$NPNP \rightarrow r NPNP$

$NPVP \rightarrow q NPNP$



• Another way to think about it ...

• Before tree) =
$$\prod_{n \in nodes(tree)} \rho(childsequence(n) \mid n)$$

• Now:
$$p(tree) = \prod_{n \in nodes(tree)} \rho(childsequence(n) \mid n, parent(n))$$

- This could conceivably **help** performance (weaker independence assumptions)
- This could conceivably **hurt** performance (data sparseness)

- From Johnson (1998):
- PCFG from WSJ Treebank: 14,962 rules
- Of those, 1,327 would **always** be subsumed!
 - After parent annotation: 22,773 rules
 - Recall 69.7% -> 79.2%; precision 73.5% -> 80.0%

Head Annotation

• "I love all my children, but one of them is **special**."

- Heads not in the Treebank.
- Usually people use **deterministic head rules** (Magerman, 1995).

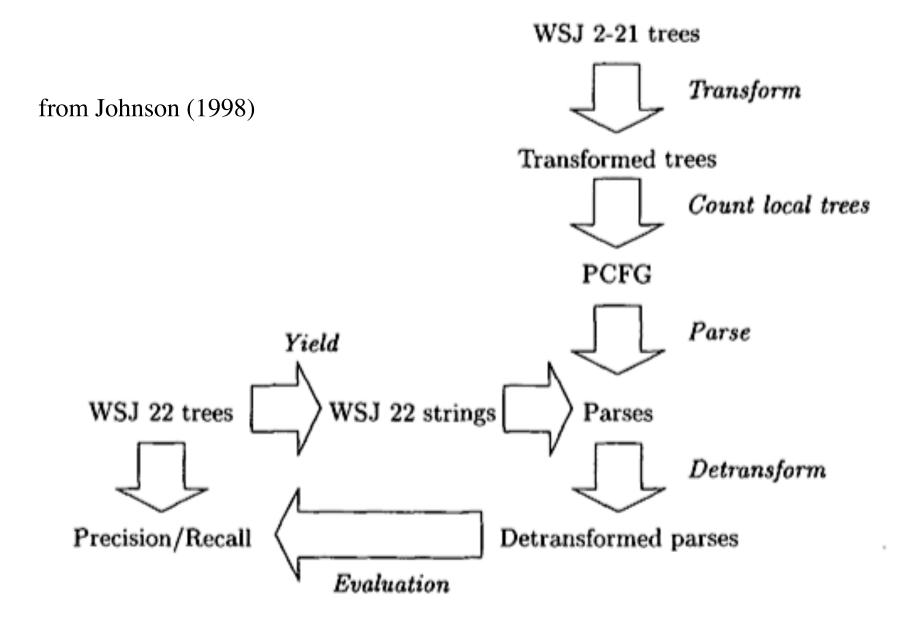
Algorithms

- These "decorations" affect our parser's runtime.
 - Why?
 - Any ideas about how to get around this?

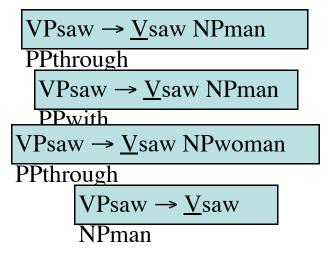
Some Famous Parsers

Training Parsers In Practice

- Transformations on trees
- Some of these are generally taken to be crucial
- Some are widely debated
- Lately, people have started **learning** these transformations
 - Smoothing is crucial; the grammars that result from transformed trees have lots more rules and therefore more parameters.



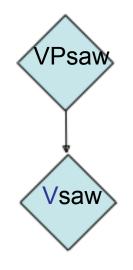
- Trees are headed and lexicalized What's the difference?
- Huge number of rules!



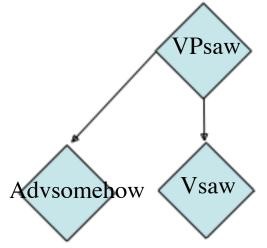
• Key: factor probabilities within rule.

• Everything factors down to rules, then further. We're given the parent nonterminal and head word.

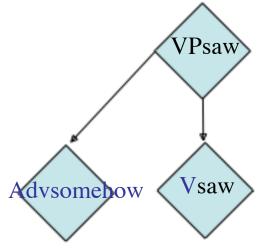
- Everything factors down to rules, then further. We're given the parent nonterminal and head word.
- Randomly generate the head child's nonterminal.



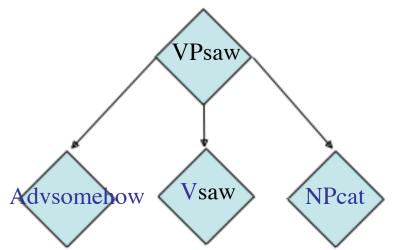
- Everything factors down to rules, then further. We're given the parent nonterminal and head word.
- Randomly generate the head child's nonterminal.
- Generate a sequence of left children.



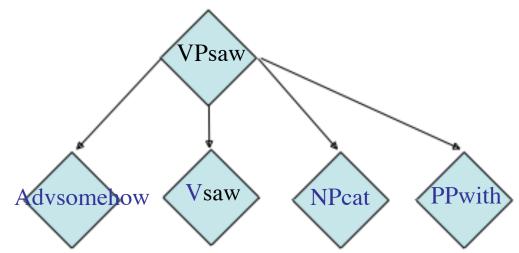
- Everything factors down to rules, then further. We're given the parent nonterminal and head word.
- Randomly generate the head child's nonterminal.
- Generate a sequence of left children.



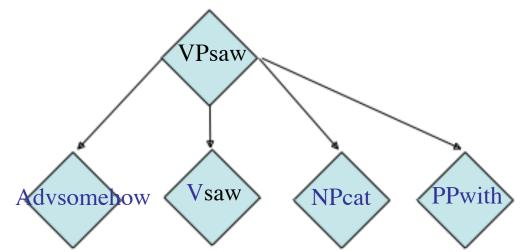
- Everything factors down to rules, then further. We're given the parent nonterminal and head word.
- Randomly generate the head child's nonterminal.
- Generate a sequence of left children.
- Then right.



- Everything factors down to rules, then further. We're given the parent nonterminal and head word.
- Randomly generate the head child's nonterminal.
- Generate a sequence of left children.
- Then right.



- Everything factors down to rules, then further. We're given the parent nonterminal and head word.
- Randomly generate the head child's nonterminal.
- Generate a sequence of left children.
- Then right.

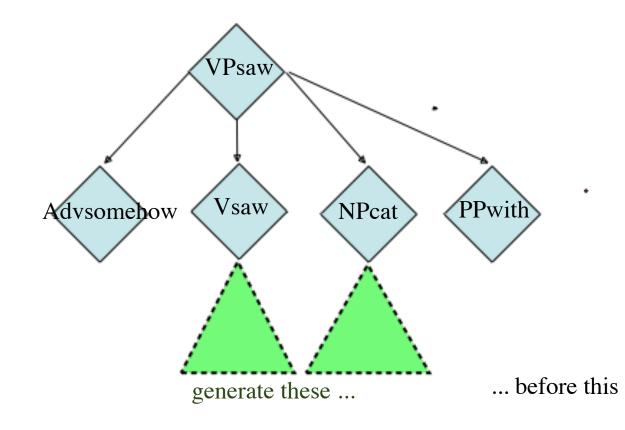


• Interesting twist: want to model the **distance** between head constituent and child constituent. How?

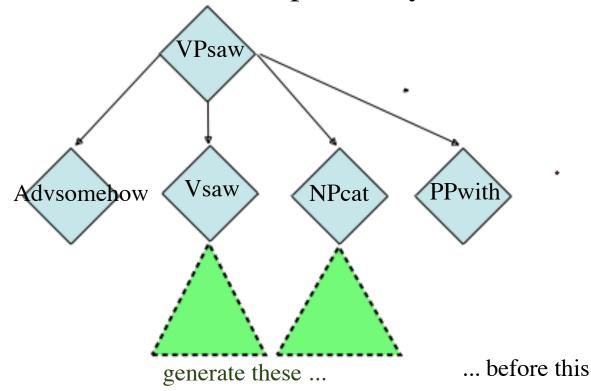


٠

- Interesting twist: want to model the **distance** between head constituent and child constituent. How?
- Depth-first recursion.



- Interesting twist: want to model the **distance** between head constituent and child constituent. How?
- Depth-first recursion.
- Condition next child on features of the parent's yield so far.



- Interesting twist: want to model the **distance** between head constituent and child constituent. How?
- Depth-first recursion.
- Condition next child on features of the parent's yield so far.

$$\begin{split} p(\mathrm{PP}_{\mathrm{with}} \mid \mathrm{VP}_{\mathrm{saw}}, \mathrm{right}, \text{``the cat who liked milk''}) &\approx p(\mathrm{PP}_{\mathrm{with}} \mid \mathrm{VP}_{\mathrm{saw}}, \mathrm{right}, \mathrm{length} > 0, + \mathrm{verb}) \\ p(L_n, u_n, L_{n-1}, u_{n-1}, \dots, L_1, u_1, H, w, R_1, v_1, R_2, v_2, \dots, R_m, v_m \mid P, w) \\ &= p(H \mid P, w) \\ &\cdot \prod_{i=1}^n p(L_i, u_i \mid P, w, H, \mathrm{left}, \Delta_i) \\ &\cdot p(\mathrm{stop} \mid P, w, H, \mathrm{left}, \Delta_{n+1}) \\ &\cdot \prod_{i=1}^m p(R_i, v_i \mid P, w, H, \mathrm{right}, \Delta'_i) \\ &\cdot p(\mathrm{stop} \mid P, w, H, \mathrm{right}, \Delta'_{n+1}) \end{split}$$

Collins Models 2 and 3 (1997)

- Model 2: Complements, adjuncts and subcategorization frames
- Treebank decoration: -C on specifiers and arguments
- Probability model: first pick set of complements (side-wise), must ensure they are all generated
- the issue was a bill funding Congress
- Model 3: Wh-movement and extraction
- Treebank decoration: "gap feature"
- Probability model: gap feature "passed around the tree," must be "discharged" as a trace element.
- the store that IBM bought last week

Other Points

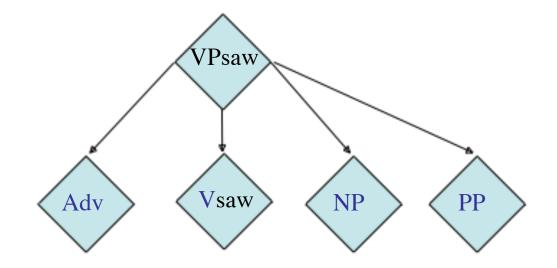
- Unknown words at test time: any training word with count < 6 becomes UNK
- Smoothing: deleted interpolation
- Tagging is just part of parsing (not a separate stage)
- Markov order increased in special cases:
- within base noun phrases (NPBs) first order
- conjunctions ("and") predicted together with second conjunct
- punctuation (details in 2003 paper)

Practical Notes

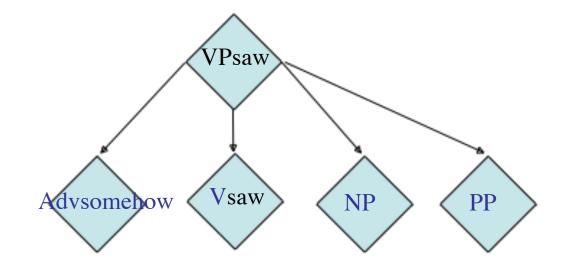
- Collins parser is freely available
- Dan Bikel replicated the Collins parser cleanly in Java
- Easier to re-train
- Easier to plug-and-play with different options
- Multilingual support
- May be faster (with current Java) I'm not sure

- Generally similar to Collins
- Key differences:
- Used an additional 30 million words of unparsed text in training
- Rules not fully markovized: pick full nonterminal sequence, then lexicalize each child independently

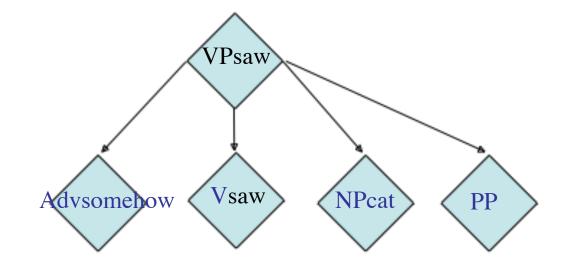
VPsaw → Adv <u>V</u> NP PP



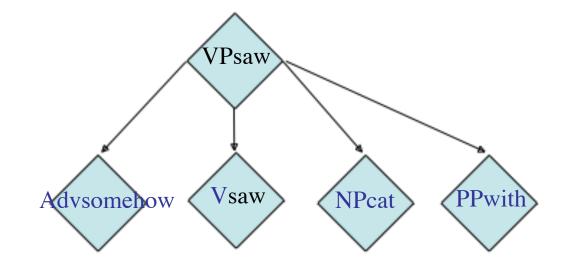
p(somehow I VPsaw, Adv)



p(cat I VPsaw, NP)



p(with I VPsaw, PP)



Charniak (2000)

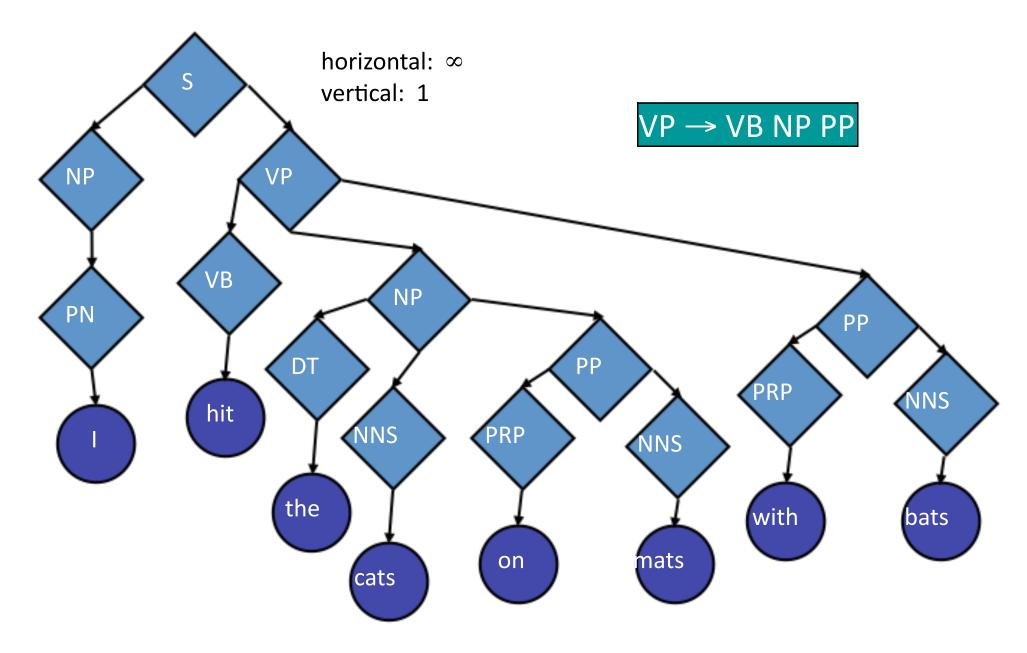
- Uses grandparents (Johnson '98 transformation)
- Markovized children (like Collins)
- Bizarre probability model:
- Smoothed estimates at many backoff levels
- Multiply them together
- "Maximum entropy inspired"
- Kind of a product of experts (untrained)

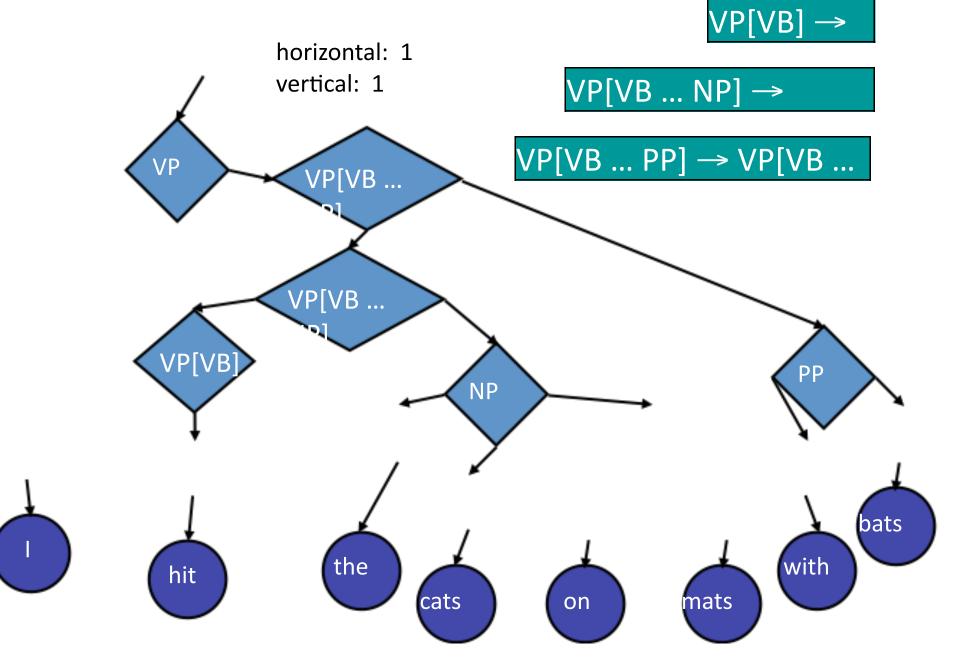
Comparison

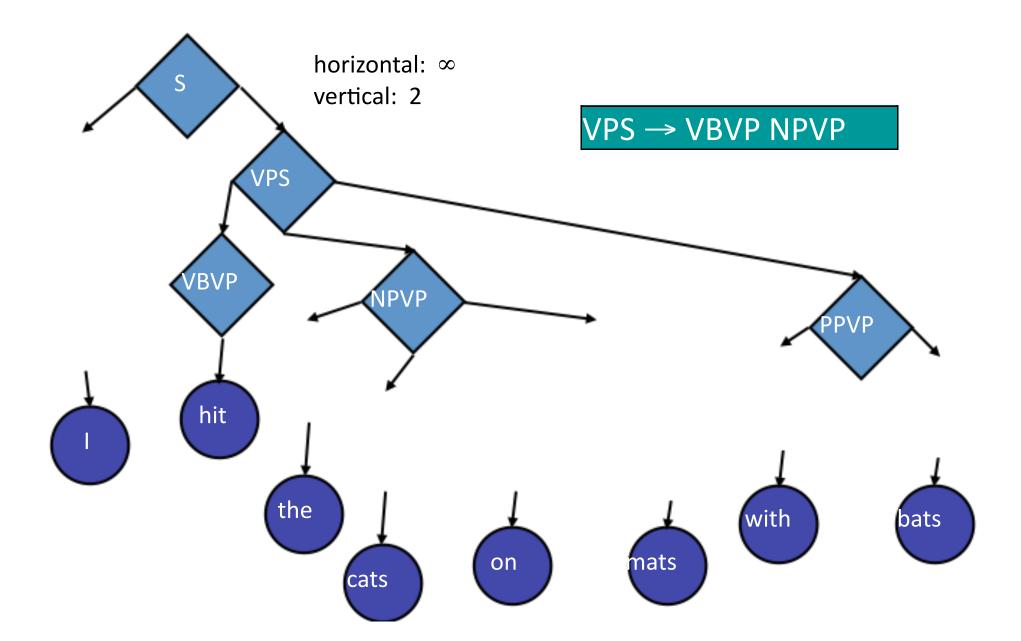
		labeled recall	labeled precision	average crossing brackets
Collins	Model 1	87.5	87.7	1.09
	Model 2	88.1	88.3	1.06
	Model 3	88.0	88.3	1.05
Charniak	1997	86.7	86.6	1.20
	2000	89.6	89.5	0.88

Klein and Manning (2003)

- By now, lexicalization was kind of controversial
- So many probabilities, such expensive parsing: is it necessary?
 - Goal: reasonable unlexicalized baseline
- What tree transformations make sense?
- Markovization (what order?)
- Add all kinds of information to each node in the treebank
 - Performance close to Collins model, much better than earlier unlexicalized models







- More vertical Markovization is better
- Consistent with Johnson (1998)
 - Horizontal 1 or 2 beats 0 or ∞
- Used (2, 2), but if sparse "back off" to 1

Other Tree Decorations

- Mark nodes with only 1 child as UNARY
- Mark DTs (determiners), RBs (adverbs) when they are only children
- Annotate POS tags with their parents
- Split IN (prepositions; 6 ways), AUX, CC, %
- NPs: temporal, possessive, base
- VPs annotated with head tag (finite vs. others)
- DOMINATES-V
- RIGHT-RECURSIVE NP

Comparison

		labeled recall	labeled precision	average crossing brackets
Collins	Model 1	87.5	87.7	1.09
	Model 2	88.1	88.3	1.06
	Model 3	88.0	88.3	1.05
Charniak	1997	86.7	86.6	1.20
	2000	89.6	89.5	0.88
K&M	2003	86.3	85.1	1.31