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Grammar Structure 
• The grammars we’ve seen so far are instances of phrase 

structure grammars 

– Deal with arrangement of contiguous phrases within the grammar 

– Not specific to natural language 

• Works for many other languages, e.g. computer programs, the language of 

irrationals 

– Natural language:  

• Assumption: Meaning is held in contiguous phrases 

• Phrase structure does not always reveal the entire story 

– Particularly in languages with free word order 

– Modern theories largely trace back to Chomsky.. 
 

• An alternate approach looks at direct ͞dependencies͟ between 

words 

– Specific to NL.. 



Dependency 

• Dependency theory is built on the hypothesis that words 

are governed by one another directly, rather than 

through intermediate non-terminal entities 

• Identifying these connections helps us interpret a 

sentence 

• ͞Governance͟ can be identified based on different factors 

– Syntax, morphology, phonetics, semantics… 

Semantic dependencies, 
from Wikipedia 



Dependency vs Phrase Structure 

• But how do we decide which word connects to 

which? 

– Coming up.. 

Colorless green ideas sleep furiously Colorless green ideas sleep furiously 

Adj N Adj 

NP 

NP 

S 

V Adv 

VP 



A brief history 

th century BC 

– I.e. at least as old as constituency theory 
 

th

 

• Mentions in the nineteenth century, but serious  revival only in the 

mid-late twentieth century 



Dependency 

• Modern dependency theory traces back to the work of 

• Dependency is the notion that linguistic units (words) are 

connected to one another by directed links. 

• The verb is taken to be the structural center of the clause 

structure 

– All other words are connected directly or indirectly to the verb 

through directed links called ͞dependencies͟ 

• Tarvainen, Kalevi. Depedenssikielioppi. Helsinki:1977 

• Matthews, Peter. Syntax. Cambridge: Cambridge University Press, 

1981 



Dependency structure 

• Specifically, every word is assumed to be 

governed by one other word in the sentence 

– Though each word may govern multiple words 

– ͞Parent-child͟ relationship 

– I.e. tree structure 



Dependency: hierarchy 

• A sentence is described as a hierarchical 

structure, where some parts of the sentence 

have a higher place than others  

– The verb has the highest place 

read 

John a book yesterday 

good (Tarvainen, ‘87) 



Dependency: hierarchy 

• A sentence is described as a hierarchical 

structure, where some parts of the sentence 

have a higher place than others 

– The verb has the highest place 

read 

John a book yesterday 

good (Tarvainen, ‘87) 

Governor/controller 

dependent 



The hidden story 

• Modern linguistic theories (both Chomsky and 

) assume parent-child relationships 

– Single parent, (possibly) multiple children 

– It is this assumption that makes computational modelling 

tractable 

• Like all assumptions, not universally valid 

Colorless green ideas sleep furiously 

Colorless green ideas sleep furiously 

Adj N Adj 

NP 

NP 

S 

V Adv 

VP 



Dependency 

• Can change without changing meaning 

https://www.linkedin.com/pulse/parent-child-principle-grammar-wei-li 



Even conjugation is a problem 

• Even simple things like conjugation can cause problems 

– Example from Radulphus Brito,  ca 1300 

• Brito was one of the ͞modistae ,͟  a group of grammarians in the 

late 1200s who also tried to formalize language 

• They employed dependency structure, but did not separate 

semantics from syntax, leading to odd structures 



So: why dependency? 

• Dependency trees are much smaller than phrase-structure 

trees 

– Easier to represent 

• If appropriately plotted, can capture information that most 

(tractable) phrase structure grammars cannot 

– E.g. for non-configurational languages.. 

Colorless green ideas sleep furiously 

Colorless green ideas sleep furiously 

Adj N Adj 

NP 

NP 

S 

V Adv 

VP 



Equivalence 

• ͞In general, it can be shown that for any dependency grammar 

there is a phrase structure grammar which will generate an identical 

set of sentences; likewise for any phrase structure grammar (or any 

PSF limited to the form of rule which we have illustrated) the same 

set of sentences can be generated by a dependency grammar.  In 

that sense the two are said to be weakly equivalent͟ 

– From ͞Syntax ,͟  Peter Hugoe Matthews, Cambridge University Press, 

1981 

• Does not mean the trees will be identical 

– If they were, the two would be ͞strongly equivalent͟ 

– They are not strongly equivalent 

• Descriptions you get for dependency grammars are not all derivable from PS 

grammars and vice versa 



The problem 

• Determining a meaningful dependency structure 

in a sentence helps us interpret it 

– Assumption: structure is somehow related to meaning 

• Problem: How do we determine the dependency 

structure? 

Colorless green ideas sleep furiously 



The problem 

• An exponentially large number of ways of drawing the tree 

– How do we choose the right one 

– How do we assign probabilities for the various options? 

Colorless green ideas sleep furiously 

Colorless green ideas sleep furiously 

Colorless green ideas sleep furiously 



Finding the dependency tree.. 

• AKA dependency parsing 

• Define a structure to the tree 

– E.g. Exclude some options 

• Define rules of dependency 

– What kinds of dependencies are possible 

• Or what makes some dependencies more likely than others 

– AKA a dependency grammar! 

– Problem:  Need to define potential dependency 

between every word and every word! 
Projective (no crossing lines) Projective (has crossing lines) 



Dependencies and Context-Freeness 

• Projective dependency trees are ones where 
edges don’t cross 

• Projective dependency parsing means 
searching only for projective trees 

• English is mostly projective... 



Dependencies and Context-Freeness 

• But not entirely! 

 

 

 

 

• Dependencies constructed through simple 

means from the Penn treebank will be 

projective. 

– Parses follow a CFG 



Dependencies and Context-Freeness 

• Other languages are arguably less projective 

 

 

 

 

 

• Projective dependency grammars generate context-
free languages 

• Non-projective dependency grammars can generate 
context-sensitive languages 



Finding the dependency tree.. 

• AKA dependency parsing 

• Define a structure to the tree 

– Exclude some options 

• Define rules of dependency 

– What kinds of dependencies are possible 

• Or what makes some dependencies more likely than others 

– AKA a dependency grammar! 

– Problem:  Need to define potential dependency between every 

word and every word! 

• The manner in which we define these dependencies will 

determine the tree we will find 

– Learnable from human annotation.. 



Typical criteria for dependency 

•
 � depends on head 
 � in a structure 
 � if: 

–
 � determines syntactic category of 

 � 
• And could even replace 

 � 
–

 � is mandatory, 

 � is optional 

–
 � determines 

 � and decides if it is mandatory 

– The form of 

 � depends on 

 � 

– The position of 

 � is with reference to 

 � 

–
 � modifies 

 � semantically, and 

 � assigns semantic to 

 � 
• Note: dependency determined not just by the words, but by the 

structures they are connected to! 
 

• These (and other criteria) can be codified into a model 

– For now we will assume that a simplified model… 



Some arbitrary rules 

• Conjugation is linear 

• Periods attach to the verb 

Milk and Cookies 



Projective Dependency Parsing 

• Major assumption:  edge-factored model 

 

 

• Carroll and Charniak (1992) described a PCFG that has 

this property 

• Eisner (1996) described several stochastic models for 

generating projective trees like this 

• This is a linear model with a certain kind of feature 

locality 

– Will not go into actual features that have been proposed 



Projective Dependency Parsing 

• Major assumption:  edge-factored model  � � � 

1
 � =  � ሺ ݁ , � ሻ 

�
 

∈
 

�  

• A common form of edge-factored model scores:  � ݁ , � = � � ݁ , �  
 ݁ , �  is a vector of features derived from the edge and the 

tree it resides in 

• Not dealing with this issue just yet, just assume the scores can be 

computed 

 

• Find the tree with the highest 

 � � � 1 �  
 



Projective Dependency Parsing 
 � � � 

1
 � = � ݁ ′ , � +   � ሺ ݁ , � ሻ 

�
 

∈
 

�
 

\
 

�
 

′  

• Removing an edge splits the tree into two 

– Property of a tree 

• For our dependency graph, every edge connects two words and can 
be written as: 

 ݁ = ሺ � ௜ , � ௝ ሻ 
• So (since the cost of edges only depends on the trees they reside in)  � � � 1 � = � � ௜ , � ௝ , � + � � � ௜ + � � � ௝  

–
 � � � ௜  is the score of the subtree that includes 

 � ௜  
• If 

 ݅ = ݆,  � � � 1 � = � � + � ௜ + � � − � ௝  

–
 � + � ௜  is the tree for which 
 � ௜ is a leaf 

–
 � − � ௝  is the tree for which 
 � ௝ is a head 



Projective Dependency Parsing 
 � � � 

1
 � = � ݁ ′ , � +   � ሺ ݁ , � ሻ 

�
 

∈
 

�
 

\
 

�
 

′  

• Removing an edge splits the tree into two 

– Property of a tree 

• For our dependency graph, every edge connects two words and can 
be written as: 

 ݁ = ሺ � ௜ , � ௝ ሻ 
• So (since the cost of edges only depends on the trees they reside in)  � � � 1 � = � � ௜ , � ௝ , � + � � � ௜ + � � � ௝  

–
 � � � ௜  is the score of the subtree that includes 

 � ௜  
• If 

 ݅ = ݆,  � � � 1 � = � � + � ௜ + � � − � ௝  

–
 � + � ௜  is the tree for which 
 � ௜ is a leaf 

–
 � − � ௝  is the tree for which 
 � ௝ is a head This is sufficient to build a  

DP algorithm! 



Basic idea 

• Given many ways of partitioning a string into 

two subtrees, the merged tree that gives you 

the best combined score is the best overall 

tree 

– We build the DP on this idea 

 � � � 1 � = � � ௜ , � ௝ , � + � � � ௜ + � � � ௝  



Dependency Grammar 

• A variety of theories and formalisms 

• Focus on relationship between words and their 

syntactic relationships 

• Correlates with study of languages that have free(r) 

word order (e.g., Czech) 

• Lexicalization is central, phrases secondary 
 

• We will talk about bare bones dependency trees 

(Eisner, 1996), then consider adding dependency labels 



Bare Bones Dependency Parse 

we  

wash  

our  

cats  



Bare Bones Dependency Parse 

we  

wash  

our  

cats  

who 

stink 



Bare Bones Dependency Parse 

we  

wash  

our  

cats  

who 

stink 

vigorously 



Bare Bones Dependency Parse 

we  

wash  

our  

cats and dogs  

who 

stink 

vigorously 



Bare Bones Dependency Parse 

we  

wash  

our  

who 

stink 

vigorously 

cats and dogs  



Graph-based vs. Transition-based 

• All models above optimize a global score and resort to local 

features 

– These are sometimes known as graph-based models. 

• Just like in the phrase-structure/constituent world, there are 

also approaches that use shift-reduce algorithms. 

• With good statistical learning methods, you can get very high 

performance using greedy search without back-tracking! 

• ͆Local decisions, global features͇ 

– These are known as transition-based models; they reduce 

a structured problem to a lot of classification decisions, 

kind of like MEMMs. 

– See work by J. Nivre. 



Algorithms != Models 

• As in HMMs, PCFGs, etc., the algorithms we need 
depend on the independence assumptions, not 
on the specific formulation of the statistical 
scores. 

• We assume, from here on, that the scores are 
factored by dependency tree edges. 

 

 

• Projective algorithm (Eisner, 1996) 

• Non-projective algorithm (McDonald et al., 2005) 



The naive algorithm 

• For each possible ͞span͟ (length of string) 

– Starting from each position 

• Compute and save all possible trees (with different 
headwords) from lower-span trees 

$ We wash our dogs 
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The naive algorithm 

• For each possible ͞span͟ (length of string) 

– Starting from each position 

• Compute and save all possible trees (with different 
headwords) from lower-span trees 

$ We wash our dogs 



The naive algorithm 

• For each possible ͞span͟ (length of string) 

– Starting from each position 

• Compute and save all possible trees (with different 
headwords) from lower-span trees 

$ We wash our dogs 



The naive algorithm 

• Each span of 
 � words has 
 � possible head words 

– Representing 
 � trees 

– Building the next-level span trees must evaluate all K of 
these for composition 

• Overall cost of algorithm 
 ܱ ሺ ܰ ͷ ሻ 

$ We wash our dogs 



Eisner 96 

• Realization: You don’t need to store and 

evaluate all 
 � possible trees in the 
 �-span 

– If carefully done, sufficient to only consider 

subtrees with roots at the end! 

$ We wash our dogs 



Remember CKY 

Y Z 

X → Y Z 
i j k j + 1 

X 

i k 

X → wi 
wi 

X 

i i 

S 

1 n 



CKY with Heads 

Y[h] Z[c] 
X[h]→ Y[h] Z[c] 

i j k j + 1 

X[h] 

i k 

X[wi] → wi 
wi 

X[wi] 

i i 

S 

1 n 



CKY with Heads (one more rule) 

Y[c] Z[h] 
X[h]→ Y[c] Z[h] 

i j k j + 1 

X[h] 

i k 



CKY with Heads, without 

Nonterminals 

h c 
h → h c 

i j k j + 1 

h 

i k 

wi 

wi 

i i 

w 

1 n 

*Plus the rule for h → c h. 

What’s the runtime? 



Eisner s Algorithm 

• An instance of a maximum spanning tree 

algorithm 

– Or  a minimum spanning tree, depending on whether 
we consider a score or a cost 

• Note: The ͞root͟ symbol at the beginning 

• Finds a spanning tree from the root that has the 
highest score (or probability) 

$  I  SAW  THE  GIRL  WITH  A  BOOK 



Eisner s Algorithm 

• Notation:  � ݅ ݆ ݀ [ ܿ ] 
• Best cost of tree spanning symbols 

 ݅ , ݆  

–
 ݀ =   →  : Root at 

 ݅ 
–

 ݀ =   ←  : Root at 

 ݆ 
–

 ܿ = Ͳ  : Incomplete subtree: Can be extended from boundary 

–
 ܿ = ͳ  : Complete subtree: Boundary cannot be extended, must 

be extended from root 

 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

 � Ͷ 7 → [ ͳ ]  � Ͳ Ͷ → [ Ͳ ] 



Eisner s Algorithm 

• Recursive, for every span, find 

– Best left-to-right incomplete tree 

– Best right-to-left incomplete tree 

– Best left-to-right complete tree 

– Best right-to-left complete tree 

$  I  SAW  THE  GIRL  WITH  A  BOOK 



Eisner s Algorithm 

• Note dynamic programming structure 

• Uses best length-N trees to find best length N+1 trees 

– ͞Score͟ may be computed by any model 

• Algorithm is O(N3) 

for 

 ݅ ∶ Ͳ … � and all 

 ݀ , ܿ: 
      

 � ݅ ݅ ݀ ܿ = Ͳ 
for 

 � : ͳ … � : 
      for 

 :� − � … Ͳ : ݏ 
             

 � + ݏ = ݐ 
             

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �   

            
ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

            
ͳ → ݐ ݆ � + ͳ → ݆ ݏ �   ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   

             

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ �   ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

return 

 � Ͳ � → ͳ  



Explanation with pictures 

• Right triangle:  Complete tree, with root at left 

• Right trapezium: Incomplete tree with root at left 

• Left triangle and left trapezium are corresponding 

structures with the root to the right 



Explanation with pictures 

• Complete right subtree:  Cannot take additional right children 

– Can have arbitrary substructure within subtree 

– Root to extreme left 

 

• Complete left  subtree:  Cannot take additional left children 

– Can have arbitrary substructure within subtree 

– Root to extreme right 



Explanation with pictures 

• Complete right subtree:  Cannot take additional right children 

– Can have arbitrary substructure within subtree 

– Root to extreme left 

 

• Complete left  subtree:  Cannot take additional left children 

– Can have arbitrary substructure within subtree 

– Root to extreme right 

Connections from/to root 
This is OK 



Explanation with pictures 

• Note representation of best score 

 ݐ  ݏ  ݐ  ݏ 
 [ ͳ ] ← ݐ ݏ �  [ ͳ ] → ݐ ݏ � 



Explanation with pictures 

• Incomplete right subtree:  Can extend to the right from rightmost 

node 

– But not from any other node 

– Root at extreme left 
 

• Incomplete left subtree:  Can extend to the left from leftmost node 

– But not from any other node 

– Root at extreme right 



Explanation with pictures 

• Incomplete right subtree:  Can extend to the right from rightmost 

node 

– But not from any other node 

– Root at extreme left 
 

• Incomplete left subtree:  Can extend to the left from leftmost node 

– But not from any other node 

– Root at extreme right 

Connections from/to root 
This is NOT OK 



Explanation with pictures 

• Note representation of best score 

 ݐ  ݏ  ݐ  ݏ 
 [ Ͳ ] ← ݐ ݏ �  [ Ͳ ] → ݐ ݏ � 



Logic behind recursion 

• By our model: The score of connecting two 

spans is the sum of the score of the individual 

spans plus the score of the connection 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

Case 1: Connecting the heads of two spans one word apart 

 � ͳ ͵ ל ? כ Ͷ ͷ כ ? = � ͳ ͵ כ ? + � Ͷ ͷ כ ? + � ሺ � 1 , � 5 ሻ 



Logic behind recursion 

• The best score for composing a span from 
 ݅ → ݆ 

is the score derived from the best junction 

$  I  SAW  THE  GIRL  WITH  A  BOOK 
Connecting the heads of two spans one word apart 

 � ͳ ͷ כ ? = max ௝     � ͳ ݆ כ ? + � ݆ ͷ כ ? + � ሺ � 1 , � 5 ሻ 



Logic behind recursion 

• By our model: The score of connecting two 

spans is the sum of the scores of the 

individual spans 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

Case 2: Connecting two spans at a boundary 

 � ͳ ͵ ל ? כ ͵ ͷ כ ? = � ͳ ͵ כ ? + � Ͷ ͷ כ ?  



Logic behind recursion 

• The best score for composing a span from 
 ݅ → ݆ 

is the score derived from the best junction 

$  I  SAW  THE  GIRL  WITH  A  BOOK 
Connecting the heads of two spans one word apart 

 � ͳ ͷ כ ? = max ௝     � ͳ ݆ כ ? + � ݆ ͷ כ ?  



Logic behind recursion 

• All possible ways of forming the span 

$  I  SAW  THE  GIRL  WITH  A  BOOK 
Connecting the heads of two spans one word apart 



In figures 

• There are four kinds of subtrees we can compose 

within any span with the root at a boundary 

• Lets see how we can compose these 

$  I  SAW  THE  GIRL  WITH  A  BOOK 



In figures 

• There are four kinds of subtrees we can compose 

within any span with the root at a boundary 

• Lets see how we can compose these 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

If we do this right, we never 
have to worry about composing 
any subtree with a root in the 
middle 
 
It will naturally fall out of the 
algorithm 



• Connecting two competed trees to get an incomplete tree 

– Showing left to right only (connection from root of left tree to root of right tree) 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

Select the best one 

Outcome 

� ݏ ݐ → Ͳ = max௦≤௝<௧� ݏ ݆ → ͳ + � ݆ + ͳ ݐ ← ͳ + �ሺ�௦, �௧ሻ 
Left to right 



• Connecting two competed trees to get an incomplete tree 

– Showing right to left 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

Select the best one 

Outcome 

� ݏ ݐ ← Ͳ = max௦≤௝<௧� ݏ ݆ → ͳ + � ݆ + ͳ ݐ ← ͳ + �ሺ�௧, �௦ሻ 
Right to left 



• Connecting an incomplete tree and a complete tree to get a complete tree 

– Showing left to right only (root to left) 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

Select the best one 

Outcome 

ͳ → ݐ ݆ � + Ͳ → ݆ ݏ �     ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   



• Connecting an incomplete tree and a complete tree to get a complete tree 

– Showing Right to Left (Root is to the right) 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

Select the best one 

Outcome 

ͳ ← ݐ ݆ � + Ͳ ← ݆ ݏ �     ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   



• The sequence of operations 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



Eisner s Algorithm 

• Note dynamic programming structure 

• Uses best length-N trees to find best length N+1 trees 

– ͞Score͟ may be computed by any model 

• Algorithm is O(N3) 

for 

 ݅ ∶ Ͳ … � and all 

 ݀ , ܿ: 
      

 � ݅ ݅ ݀ ܿ = Ͳ 
for 

 � : ͳ … � : 
      for 

 :� − � … Ͳ : ݏ 
             

 � + ݏ = ݐ 
             

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �   

            
ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

            
ͳ → ݐ ݆ � + ͳ → ݆ ݏ �   ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   

             

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ �   ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

return 

 � Ͳ � → ͳ  



Eisner s Algorithm 

• Note dynamic programming structure 

• Uses best length-N trees to find best length N+1 trees 

– ͞Score͟ may be computed by any model 

• Algorithm is O(N3) 

for 

 ݅ ∶ Ͳ … � and all 

 ݀ , ܿ: 
      

 � ݅ ݅ ݀ ܿ = Ͳ 
for 

 � : ͳ … � : 
      for 

 :� − � … Ͳ : ݏ 
             

 � + ݏ = ݐ 
             

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �   

            
ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

            
ͳ → ݐ ݆ � + ͳ → ݆ ݏ �   ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   

             

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ �   ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

return 

 � Ͳ � → ͳ  



• The sequence of operations 

• Level 0:  every word is both a left and right directed tree 

with score 0 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 

 � ݅ ݅ → ͳ = � ݅ ݅ ← ͳ = Ͳ 



Eisner s Algorithm 

• Note dynamic programming structure 

• Uses best length-N trees to find best length N+1 trees 

– ͞Score͟ may be computed by any model 

• Algorithm is O(N3) 

for 

 ݅ ∶ Ͳ … � and all 

 ݀ , ܿ: 
      

 � ݅ ݅ ݀ ܿ = Ͳ 
for 

 � : ͳ … � : 
      for 

 :� − � … Ͳ : ݏ 
             

 � + ݏ = ݐ 
             

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �   

            
ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

            
ͳ → ݐ ݆ � + ͳ → ݆ ݏ �   ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   

             

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ �   ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

return 

 � Ͳ � → ͳ  

 � = ͳ 



• Level 1:  Using level 0 trees, compose two-word span trees from every word 

– Left incomplete tree 

– Right incomplete tree 

– Left complete tree 

– Right complete tree 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



Eisner s Algorithm 

• Note dynamic programming structure 

• Uses best length-N trees to find best length N+1 trees 

– ͞Score͟ may be computed by any model 

• Algorithm is O(N3) 

for 

 ݅ ∶ Ͳ … � and all 

 ݀ , ܿ: 
      

 � ݅ ݅ ݀ ܿ = Ͳ 
for 

 � : ͳ … � : 
      for 

 :� − � … Ͳ : ݏ 
             

 � + ݏ = ݐ 
             

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �   

            
ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

            
ͳ → ݐ ݆ � + ͳ → ݆ ݏ �   ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   

             

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ �   ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

return 

 � Ͳ � → ͳ  

 � = ʹ 



• Level 1:  Using level 0 and level 1 trees, compose all four types of three-word span 

trees, starting at every word 

– Left incomplete tree 

– Right incomplete tree 

– Left complete tree 

– Right complete tree 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



Eisner s Algorithm 

• Note dynamic programming structure 

• Uses best length-N trees to find best length N+1 trees 

– ͞Score͟ may be computed by any model 

• Algorithm is O(N3) 

for 

 ݅ ∶ Ͳ … � and all 

 ݀ , ܿ: 
      

 � ݅ ݅ ݀ ܿ = Ͳ 
for 

 � : ͳ … � : 
      for 

 :� − � … Ͳ : ݏ 
             

 � + ݏ = ݐ 
             

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �   

            
ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ �   Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

            
ͳ → ݐ ݆ � + ͳ → ݆ ݏ �   ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �   

             

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ �   ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �   

return 

 � Ͳ � → ͳ  

 � = ͵ 



• Level 1:  Using level 0, level 1 and level 2 trees, compose all four types of four-word 

span trees, starting at every word 

– Left incomplete tree 

– Right incomplete tree 

– Left complete tree 

– Right complete tree 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



• Construct all five-word trees from lower-level trees, 

starting at each position 

– As the length of the tree increases, the number of trees 

decrease 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



• Recursively increase the span 

– Increasing span decreases the number of trees 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



• Recursively increase the span 

– Increasing span decreases the number of trees 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



• Recursively increase the span 

– Increasing span decreases the number of trees 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



• Eventually we should have a single complete LR 

tree, starting from the initial $ (the root) 

– If we don’t, the parse has failed 

$  I  SAW  THE  GIRL  WITH  A  BOOK 

An Example 



Example of the Eisner Algorithm 

$ The professor chuckled with unabashed glee 

goal 



Example of the Eisner Algorithm 

Attach: 

$ The professor chuckled with unabashed glee 
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Example of the Eisner Algorithm 
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Example of the Eisner Algorithm 

$ The professor chuckled with unabashed glee 



Bare Bones Dependencies and Labels 

• The way to represent a lot of phenomena is clear 

(predicate-argument and modifier relationships) 

• Conjunctions pose a problem 

• Sometimes words that ͆should͇ be connected are not, 

because of the single-parent rule 

• From bare bones to labels:  

– consider labeled edges 

– most algorithms can be easily extended for labeled dependency 

parsing 

• Linguistically imperfect, but computationally attractive 



Evaluation 

• Attachment accuracy 

– Labeled 

– Unlabeled 

 



Bottomline 

• Rethinking the algorithm in terms of 

attachments rather than constituents gives us 

an asymptotic savings! 

• Bare bones, projective dependency parsing is 

O(n3) 

 

• What about non-projectivity? 



Non-projective Dependency Parsing 

(McDonald et al., 2005) 

• Key idea:  a non-projective dependency parse is a 

directed spanning tree where 

– vertices = words 

– directed edges = parent-to-child relations 

• Well-known problem:  minimum-cost spanning tree 

• Solution:  Chu-Liu-Edmonds algorithm (cubic) 

– Good news:  fast!  can now recover non-projective trees! 

– Bad news:  much larger search space, potential for error 



Breaking Independence Assumptions 

• Adding labels doesn’t fundamentally change Eisner or MST 

• What about edge-factoring? 

• Projective case:  local statistical dependence among same-side 

children of a given head - still cubic (Eisner and Satta, 1999). 

• Non-projective parsing with any kind of second-order features 

(e.g., on adjacent edges) is NP-hard. 

– McDonald explored approximations in his thesis  

– Find the best projective parse and then rearrange the edges as long as 

the score improves - O(n3) 

– ILP (Martins et al., 2009) 



CoNLL Tasks 

• Dependency parsing is now more popular than constituency parsing 

– Just showed a very basic framework 

– But much current work builds on similar frameworks 
 

• 2006 and 2007:  dependency parsing on a variety of languages was 

the shared task at CoNLL - a few dozen systems. 

– Many of the datasets are freely available. 

– Parsing papers now typically evaluate on most or all of these datasets. 

 

• CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to 

Universal Dependencies 

– Followup in CoNLL 2018d 



Parsing in 2011 



Current Research Directions 

• Better learning for parsing (e.g., max margin as in 
Taskar et al., 2004; CRFs as in Finkel et al., 2008; 
many other ͆parsing͇ papers that are really 
about learning for structured prediction) 

• Integrating learning and search (Petrov, 2009) 

• Synchronous grammars in machine translation; 
bilingual parsing 

• Richer formalisms (CCG, TAG, unification-based 
grammars) 

• Integrating parsing with morphological or 
semantic analysis 


