
Natural Language

Dependency Parsing

SPFLODD

19 February 2017

Grammar Structure
• The grammars we’ve seen so far are instances of phrase

structure grammars

– Deal with arrangement of contiguous phrases within the grammar

– Not specific to natural language

• Works for many other languages, e.g. computer programs, the language of

irrationals

– Natural language:

• Assumption: Meaning is held in contiguous phrases

• Phrase structure does not always reveal the entire story

– Particularly in languages with free word order

– Modern theories largely trace back to Chomsky..

• An alternate approach looks at direct ͞dependencies͟ between

words

– Specific to NL..

Dependency

• Dependency theory is built on the hypothesis that words

are governed by one another directly, rather than

through intermediate non-terminal entities

• Identifying these connections helps us interpret a

sentence

• ͞Governance͟ can be identified based on different factors

– Syntax, morphology, phonetics, semantics…

Semantic dependencies,
from Wikipedia

Dependency vs Phrase Structure

• But how do we decide which word connects to

which?

– Coming up..

Colorless green ideas sleep furiously Colorless green ideas sleep furiously

Adj N Adj

NP

NP

S

V Adv

VP

A brief history

th century BC

– I.e. at least as old as constituency theory

th

• Mentions in the nineteenth century, but serious revival only in the

mid-late twentieth century

Dependency

• Modern dependency theory traces back to the work of

• Dependency is the notion that linguistic units (words) are

connected to one another by directed links.

• The verb is taken to be the structural center of the clause

structure

– All other words are connected directly or indirectly to the verb

through directed links called ͞dependencies͟

• Tarvainen, Kalevi. Depedenssikielioppi. Helsinki:1977

• Matthews, Peter. Syntax. Cambridge: Cambridge University Press,

1981

Dependency structure

• Specifically, every word is assumed to be

governed by one other word in the sentence

– Though each word may govern multiple words

– ͞Parent-child͟ relationship

– I.e. tree structure

Dependency: hierarchy

• A sentence is described as a hierarchical

structure, where some parts of the sentence

have a higher place than others

– The verb has the highest place

read

John a book yesterday

good (Tarvainen, ‘87)

Dependency: hierarchy

• A sentence is described as a hierarchical

structure, where some parts of the sentence

have a higher place than others

– The verb has the highest place

read

John a book yesterday

good (Tarvainen, ‘87)

Governor/controller

dependent

The hidden story

• Modern linguistic theories (both Chomsky and

) assume parent-child relationships

– Single parent, (possibly) multiple children

– It is this assumption that makes computational modelling

tractable

• Like all assumptions, not universally valid

Colorless green ideas sleep furiously

Colorless green ideas sleep furiously

Adj N Adj

NP

NP

S

V Adv

VP

Dependency

• Can change without changing meaning

https://www.linkedin.com/pulse/parent-child-principle-grammar-wei-li

Even conjugation is a problem

• Even simple things like conjugation can cause problems

– Example from Radulphus Brito, ca 1300

• Brito was one of the ͞modistae ,͟ a group of grammarians in the

late 1200s who also tried to formalize language

• They employed dependency structure, but did not separate

semantics from syntax, leading to odd structures

So: why dependency?

• Dependency trees are much smaller than phrase-structure

trees

– Easier to represent

• If appropriately plotted, can capture information that most

(tractable) phrase structure grammars cannot

– E.g. for non-configurational languages..

Colorless green ideas sleep furiously

Colorless green ideas sleep furiously

Adj N Adj

NP

NP

S

V Adv

VP

Equivalence

• ͞In general, it can be shown that for any dependency grammar

there is a phrase structure grammar which will generate an identical

set of sentences; likewise for any phrase structure grammar (or any

PSF limited to the form of rule which we have illustrated) the same

set of sentences can be generated by a dependency grammar. In

that sense the two are said to be weakly equivalent͟

– From ͞Syntax ,͟ Peter Hugoe Matthews, Cambridge University Press,

1981

• Does not mean the trees will be identical

– If they were, the two would be ͞strongly equivalent͟

– They are not strongly equivalent

• Descriptions you get for dependency grammars are not all derivable from PS

grammars and vice versa

The problem

• Determining a meaningful dependency structure

in a sentence helps us interpret it

– Assumption: structure is somehow related to meaning

• Problem: How do we determine the dependency

structure?

Colorless green ideas sleep furiously

The problem

• An exponentially large number of ways of drawing the tree

– How do we choose the right one

– How do we assign probabilities for the various options?

Colorless green ideas sleep furiously

Colorless green ideas sleep furiously

Colorless green ideas sleep furiously

Finding the dependency tree..

• AKA dependency parsing

• Define a structure to the tree

– E.g. Exclude some options

• Define rules of dependency

– What kinds of dependencies are possible

• Or what makes some dependencies more likely than others

– AKA a dependency grammar!

– Problem: Need to define potential dependency

between every word and every word!
Projective (no crossing lines) Projective (has crossing lines)

Dependencies and Context-Freeness

• Projective dependency trees are ones where
edges don’t cross

• Projective dependency parsing means
searching only for projective trees

• English is mostly projective...

Dependencies and Context-Freeness

• But not entirely!

• Dependencies constructed through simple

means from the Penn treebank will be

projective.

– Parses follow a CFG

Dependencies and Context-Freeness

• Other languages are arguably less projective

• Projective dependency grammars generate context-
free languages

• Non-projective dependency grammars can generate
context-sensitive languages

Finding the dependency tree..

• AKA dependency parsing

• Define a structure to the tree

– Exclude some options

• Define rules of dependency

– What kinds of dependencies are possible

• Or what makes some dependencies more likely than others

– AKA a dependency grammar!

– Problem: Need to define potential dependency between every

word and every word!

• The manner in which we define these dependencies will

determine the tree we will find

– Learnable from human annotation..

Typical criteria for dependency

•
 � depends on head
 � in a structure
 � if:

–
 � determines syntactic category of

 �
• And could even replace

 �
–

 � is mandatory,

 � is optional

–
 � determines

 � and decides if it is mandatory

– The form of

 � depends on

 �

– The position of

 � is with reference to

 �

–
 � modifies

 � semantically, and

 � assigns semantic to

 �
• Note: dependency determined not just by the words, but by the

structures they are connected to!

• These (and other criteria) can be codified into a model

– For now we will assume that a simplified model…

Some arbitrary rules

• Conjugation is linear

• Periods attach to the verb

Milk and Cookies

Projective Dependency Parsing

• Major assumption: edge-factored model

• Carroll and Charniak (1992) described a PCFG that has

this property

• Eisner (1996) described several stochastic models for

generating projective trees like this

• This is a linear model with a certain kind of feature

locality

– Will not go into actual features that have been proposed

Projective Dependency Parsing

• Major assumption: edge-factored model � � �

1
 � = � ሺ ݁ , � ሻ

�

∈

�

• A common form of edge-factored model scores: � ݁ , � = � � ݁ , �
 ݁ , � is a vector of features derived from the edge and the

tree it resides in

• Not dealing with this issue just yet, just assume the scores can be

computed

• Find the tree with the highest

 � � � 1 �

Projective Dependency Parsing
 � � �

1
 � = � ݁ ′ , � + � ሺ ݁ , � ሻ

�

∈

�

\

�

′

• Removing an edge splits the tree into two

– Property of a tree

• For our dependency graph, every edge connects two words and can
be written as:

 ݁ = ሺ � ௜ , � ௝ ሻ
• So (since the cost of edges only depends on the trees they reside in) � � � 1 � = � � ௜ , � ௝ , � + � � � ௜ + � � � ௝

–
 � � � ௜ is the score of the subtree that includes

 � ௜
• If

 ݅ = ݆, � � � 1 � = � � + � ௜ + � � − � ௝

–
 � + � ௜ is the tree for which
 � ௜ is a leaf

–
 � − � ௝ is the tree for which
 � ௝ is a head

Projective Dependency Parsing
 � � �

1
 � = � ݁ ′ , � + � ሺ ݁ , � ሻ

�

∈

�

\

�

′

• Removing an edge splits the tree into two

– Property of a tree

• For our dependency graph, every edge connects two words and can
be written as:

 ݁ = ሺ � ௜ , � ௝ ሻ
• So (since the cost of edges only depends on the trees they reside in) � � � 1 � = � � ௜ , � ௝ , � + � � � ௜ + � � � ௝

–
 � � � ௜ is the score of the subtree that includes

 � ௜
• If

 ݅ = ݆, � � � 1 � = � � + � ௜ + � � − � ௝

–
 � + � ௜ is the tree for which
 � ௜ is a leaf

–
 � − � ௝ is the tree for which
 � ௝ is a head This is sufficient to build a

DP algorithm!

Basic idea

• Given many ways of partitioning a string into

two subtrees, the merged tree that gives you

the best combined score is the best overall

tree

– We build the DP on this idea

 � � � 1 � = � � ௜ , � ௝ , � + � � � ௜ + � � � ௝

Dependency Grammar

• A variety of theories and formalisms

• Focus on relationship between words and their

syntactic relationships

• Correlates with study of languages that have free(r)

word order (e.g., Czech)

• Lexicalization is central, phrases secondary

• We will talk about bare bones dependency trees

(Eisner, 1996), then consider adding dependency labels

Bare Bones Dependency Parse

we

wash

our

cats

Bare Bones Dependency Parse

we

wash

our

cats

who

stink

Bare Bones Dependency Parse

we

wash

our

cats

who

stink

vigorously

Bare Bones Dependency Parse

we

wash

our

cats and dogs

who

stink

vigorously

Bare Bones Dependency Parse

we

wash

our

who

stink

vigorously

cats and dogs

Graph-based vs. Transition-based

• All models above optimize a global score and resort to local

features

– These are sometimes known as graph-based models.

• Just like in the phrase-structure/constituent world, there are

also approaches that use shift-reduce algorithms.

• With good statistical learning methods, you can get very high

performance using greedy search without back-tracking!

• ͆Local decisions, global features͇

– These are known as transition-based models; they reduce

a structured problem to a lot of classification decisions,

kind of like MEMMs.

– See work by J. Nivre.

Algorithms != Models

• As in HMMs, PCFGs, etc., the algorithms we need
depend on the independence assumptions, not
on the specific formulation of the statistical
scores.

• We assume, from here on, that the scores are
factored by dependency tree edges.

• Projective algorithm (Eisner, 1996)

• Non-projective algorithm (McDonald et al., 2005)

The naive algorithm

• For each possible ͞span͟ (length of string)

– Starting from each position

• Compute and save all possible trees (with different
headwords) from lower-span trees

$ We wash our dogs

The naive algorithm

• For each possible ͞span͟ (length of string)

– Starting from each position

• Compute and save all possible trees (with different
headwords) from lower-span trees

$ We wash our dogs

The naive algorithm

• For each possible ͞span͟ (length of string)

– Starting from each position

• Compute and save all possible trees (with different
headwords) from lower-span trees

$ We wash our dogs

The naive algorithm

• For each possible ͞span͟ (length of string)

– Starting from each position

• Compute and save all possible trees (with different
headwords) from lower-span trees

$ We wash our dogs

The naive algorithm

• For each possible ͞span͟ (length of string)

– Starting from each position

• Compute and save all possible trees (with different
headwords) from lower-span trees

$ We wash our dogs

The naive algorithm

• Each span of
 � words has
 � possible head words

– Representing
 � trees

– Building the next-level span trees must evaluate all K of
these for composition

• Overall cost of algorithm
 ܱ ሺ ܰ ͷ ሻ

$ We wash our dogs

Eisner 96

• Realization: You don’t need to store and

evaluate all
 � possible trees in the
 �-span

– If carefully done, sufficient to only consider

subtrees with roots at the end!

$ We wash our dogs

Remember CKY

Y Z

X → Y Z
i j k j + 1

X

i k

X → wi
wi

X

i i

S

1 n

CKY with Heads

Y[h] Z[c]
X[h]→ Y[h] Z[c]

i j k j + 1

X[h]

i k

X[wi] → wi
wi

X[wi]

i i

S

1 n

CKY with Heads (one more rule)

Y[c] Z[h]
X[h]→ Y[c] Z[h]

i j k j + 1

X[h]

i k

CKY with Heads, without

Nonterminals

h c
h → h c

i j k j + 1

h

i k

wi

wi

i i

w

1 n

*Plus the rule for h → c h.

What’s the runtime?

Eisner s Algorithm

• An instance of a maximum spanning tree

algorithm

– Or a minimum spanning tree, depending on whether
we consider a score or a cost

• Note: The ͞root͟ symbol at the beginning

• Finds a spanning tree from the root that has the
highest score (or probability)

$ I SAW THE GIRL WITH A BOOK

Eisner s Algorithm

• Notation: � ݅ ݆ ݀ [ܿ]
• Best cost of tree spanning symbols

 ݅ , ݆

–
 ݀ = → : Root at

 ݅
–

 ݀ = ← : Root at

 ݆
–

 ܿ = Ͳ : Incomplete subtree: Can be extended from boundary

–
 ܿ = ͳ : Complete subtree: Boundary cannot be extended, must

be extended from root

$ I SAW THE GIRL WITH A BOOK

 � Ͷ 7 → [ͳ] � Ͳ Ͷ → [Ͳ]

Eisner s Algorithm

• Recursive, for every span, find

– Best left-to-right incomplete tree

– Best right-to-left incomplete tree

– Best left-to-right complete tree

– Best right-to-left complete tree

$ I SAW THE GIRL WITH A BOOK

Eisner s Algorithm

• Note dynamic programming structure

• Uses best length-N trees to find best length N+1 trees

– ͞Score͟ may be computed by any model

• Algorithm is O(N3)

for

 ݅ ∶ Ͳ … � and all

 ݀ , ܿ:

 � ݅ ݅ ݀ ܿ = Ͳ
for

 � : ͳ … � :
 for

 :� − � … Ͳ : ݏ

 � + ݏ = ݐ

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �

ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

ͳ → ݐ ݆ � + ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

return

 � Ͳ � → ͳ

Explanation with pictures

• Right triangle: Complete tree, with root at left

• Right trapezium: Incomplete tree with root at left

• Left triangle and left trapezium are corresponding

structures with the root to the right

Explanation with pictures

• Complete right subtree: Cannot take additional right children

– Can have arbitrary substructure within subtree

– Root to extreme left

• Complete left subtree: Cannot take additional left children

– Can have arbitrary substructure within subtree

– Root to extreme right

Explanation with pictures

• Complete right subtree: Cannot take additional right children

– Can have arbitrary substructure within subtree

– Root to extreme left

• Complete left subtree: Cannot take additional left children

– Can have arbitrary substructure within subtree

– Root to extreme right

Connections from/to root
This is OK

Explanation with pictures

• Note representation of best score

 ݐ ݏ ݐ ݏ
 [ͳ] ← ݐ ݏ � [ͳ] → ݐ ݏ �

Explanation with pictures

• Incomplete right subtree: Can extend to the right from rightmost

node

– But not from any other node

– Root at extreme left

• Incomplete left subtree: Can extend to the left from leftmost node

– But not from any other node

– Root at extreme right

Explanation with pictures

• Incomplete right subtree: Can extend to the right from rightmost

node

– But not from any other node

– Root at extreme left

• Incomplete left subtree: Can extend to the left from leftmost node

– But not from any other node

– Root at extreme right

Connections from/to root
This is NOT OK

Explanation with pictures

• Note representation of best score

 ݐ ݏ ݐ ݏ
 [Ͳ] ← ݐ ݏ � [Ͳ] → ݐ ݏ �

Logic behind recursion

• By our model: The score of connecting two

spans is the sum of the score of the individual

spans plus the score of the connection

$ I SAW THE GIRL WITH A BOOK

Case 1: Connecting the heads of two spans one word apart

 � ͳ ͵ ל ? כ Ͷ ͷ כ ? = � ͳ ͵ כ ? + � Ͷ ͷ כ ? + � ሺ � 1 , � 5 ሻ

Logic behind recursion

• The best score for composing a span from
 ݅ → ݆

is the score derived from the best junction

$ I SAW THE GIRL WITH A BOOK
Connecting the heads of two spans one word apart

 � ͳ ͷ כ ? = max ௝ � ͳ ݆ כ ? + � ݆ ͷ כ ? + � ሺ � 1 , � 5 ሻ

Logic behind recursion

• By our model: The score of connecting two

spans is the sum of the scores of the

individual spans

$ I SAW THE GIRL WITH A BOOK

Case 2: Connecting two spans at a boundary

 � ͳ ͵ ל ? כ ͵ ͷ כ ? = � ͳ ͵ כ ? + � Ͷ ͷ כ ?

Logic behind recursion

• The best score for composing a span from
 ݅ → ݆

is the score derived from the best junction

$ I SAW THE GIRL WITH A BOOK
Connecting the heads of two spans one word apart

 � ͳ ͷ כ ? = max ௝ � ͳ ݆ כ ? + � ݆ ͷ כ ?

Logic behind recursion

• All possible ways of forming the span

$ I SAW THE GIRL WITH A BOOK
Connecting the heads of two spans one word apart

In figures

• There are four kinds of subtrees we can compose

within any span with the root at a boundary

• Lets see how we can compose these

$ I SAW THE GIRL WITH A BOOK

In figures

• There are four kinds of subtrees we can compose

within any span with the root at a boundary

• Lets see how we can compose these

$ I SAW THE GIRL WITH A BOOK

If we do this right, we never
have to worry about composing
any subtree with a root in the
middle

It will naturally fall out of the
algorithm

• Connecting two competed trees to get an incomplete tree

– Showing left to right only (connection from root of left tree to root of right tree)

$ I SAW THE GIRL WITH A BOOK

Select the best one

Outcome

� ݏ ݐ → Ͳ = max௦≤௝<௧� ݏ ݆ → ͳ + � ݆ + ͳ ݐ ← ͳ + �ሺ�௦, �௧ሻ
Left to right

• Connecting two competed trees to get an incomplete tree

– Showing right to left

$ I SAW THE GIRL WITH A BOOK

Select the best one

Outcome

� ݏ ݐ ← Ͳ = max௦≤௝<௧� ݏ ݆ → ͳ + � ݆ + ͳ ݐ ← ͳ + �ሺ�௧, �௦ሻ
Right to left

• Connecting an incomplete tree and a complete tree to get a complete tree

– Showing left to right only (root to left)

$ I SAW THE GIRL WITH A BOOK

Select the best one

Outcome

ͳ → ݐ ݆ � + Ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

• Connecting an incomplete tree and a complete tree to get a complete tree

– Showing Right to Left (Root is to the right)

$ I SAW THE GIRL WITH A BOOK

Select the best one

Outcome

ͳ ← ݐ ݆ � + Ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

• The sequence of operations

$ I SAW THE GIRL WITH A BOOK

An Example

Eisner s Algorithm

• Note dynamic programming structure

• Uses best length-N trees to find best length N+1 trees

– ͞Score͟ may be computed by any model

• Algorithm is O(N3)

for

 ݅ ∶ Ͳ … � and all

 ݀ , ܿ:

 � ݅ ݅ ݀ ܿ = Ͳ
for

 � : ͳ … � :
 for

 :� − � … Ͳ : ݏ

 � + ݏ = ݐ

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �

ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

ͳ → ݐ ݆ � + ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

return

 � Ͳ � → ͳ

Eisner s Algorithm

• Note dynamic programming structure

• Uses best length-N trees to find best length N+1 trees

– ͞Score͟ may be computed by any model

• Algorithm is O(N3)

for

 ݅ ∶ Ͳ … � and all

 ݀ , ܿ:

 � ݅ ݅ ݀ ܿ = Ͳ
for

 � : ͳ … � :
 for

 :� − � … Ͳ : ݏ

 � + ݏ = ݐ

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �

ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

ͳ → ݐ ݆ � + ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

return

 � Ͳ � → ͳ

• The sequence of operations

• Level 0: every word is both a left and right directed tree

with score 0

$ I SAW THE GIRL WITH A BOOK

An Example

 � ݅ ݅ → ͳ = � ݅ ݅ ← ͳ = Ͳ

Eisner s Algorithm

• Note dynamic programming structure

• Uses best length-N trees to find best length N+1 trees

– ͞Score͟ may be computed by any model

• Algorithm is O(N3)

for

 ݅ ∶ Ͳ … � and all

 ݀ , ܿ:

 � ݅ ݅ ݀ ܿ = Ͳ
for

 � : ͳ … � :
 for

 :� − � … Ͳ : ݏ

 � + ݏ = ݐ

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �

ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

ͳ → ݐ ݆ � + ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

return

 � Ͳ � → ͳ

 � = ͳ

• Level 1: Using level 0 trees, compose two-word span trees from every word

– Left incomplete tree

– Right incomplete tree

– Left complete tree

– Right complete tree

$ I SAW THE GIRL WITH A BOOK

An Example

Eisner s Algorithm

• Note dynamic programming structure

• Uses best length-N trees to find best length N+1 trees

– ͞Score͟ may be computed by any model

• Algorithm is O(N3)

for

 ݅ ∶ Ͳ … � and all

 ݀ , ܿ:

 � ݅ ݅ ݀ ܿ = Ͳ
for

 � : ͳ … � :
 for

 :� − � … Ͳ : ݏ

 � + ݏ = ݐ

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �

ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

ͳ → ݐ ݆ � + ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

return

 � Ͳ � → ͳ

 � = ʹ

• Level 1: Using level 0 and level 1 trees, compose all four types of three-word span

trees, starting at every word

– Left incomplete tree

– Right incomplete tree

– Left complete tree

– Right complete tree

$ I SAW THE GIRL WITH A BOOK

An Example

Eisner s Algorithm

• Note dynamic programming structure

• Uses best length-N trees to find best length N+1 trees

– ͞Score͟ may be computed by any model

• Algorithm is O(N3)

for

 ݅ ∶ Ͳ … � and all

 ݀ , ܿ:

 � ݅ ݅ ݀ ܿ = Ͳ
for

 � : ͳ … � :
 for

 :� − � … Ͳ : ݏ

 � + ݏ = ݐ

ͳ + � � ௦ , � ௧ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ → ݐ ݏ �

ͳ + � � ௧ , � ௦ ← ݐ ͳ + � ݆ + ͳ → ݆ ݏ � Ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

ͳ → ݐ ݆ � + ͳ → ݆ ݏ � ͳ = max ௦ < ௝ ≤ ௧ → ݐ ݏ �

ͳ ← ݐ ݆ � + ͳ ← ݆ ݏ � ͳ = max ௦ ≤ ௝ < ௧ ← ݐ ݏ �

return

 � Ͳ � → ͳ

 � = ͵

• Level 1: Using level 0, level 1 and level 2 trees, compose all four types of four-word

span trees, starting at every word

– Left incomplete tree

– Right incomplete tree

– Left complete tree

– Right complete tree

$ I SAW THE GIRL WITH A BOOK

An Example

• Construct all five-word trees from lower-level trees,

starting at each position

– As the length of the tree increases, the number of trees

decrease

$ I SAW THE GIRL WITH A BOOK

An Example

• Recursively increase the span

– Increasing span decreases the number of trees

$ I SAW THE GIRL WITH A BOOK

An Example

• Recursively increase the span

– Increasing span decreases the number of trees

$ I SAW THE GIRL WITH A BOOK

An Example

• Recursively increase the span

– Increasing span decreases the number of trees

$ I SAW THE GIRL WITH A BOOK

An Example

• Eventually we should have a single complete LR

tree, starting from the initial $ (the root)

– If we don’t, the parse has failed

$ I SAW THE GIRL WITH A BOOK

An Example

Example of the Eisner Algorithm

$ The professor chuckled with unabashed glee

goal

Example of the Eisner Algorithm

Attach:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

Complete:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

Complete:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

Attach:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

Complete:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

Attach:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

Complete:

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

$ The professor chuckled with unabashed glee

Example of the Eisner Algorithm

$ The professor chuckled with unabashed glee

Bare Bones Dependencies and Labels

• The way to represent a lot of phenomena is clear

(predicate-argument and modifier relationships)

• Conjunctions pose a problem

• Sometimes words that ͆should͇ be connected are not,

because of the single-parent rule

• From bare bones to labels:

– consider labeled edges

– most algorithms can be easily extended for labeled dependency

parsing

• Linguistically imperfect, but computationally attractive

Evaluation

• Attachment accuracy

– Labeled

– Unlabeled

Bottomline

• Rethinking the algorithm in terms of

attachments rather than constituents gives us

an asymptotic savings!

• Bare bones, projective dependency parsing is

O(n3)

• What about non-projectivity?

Non-projective Dependency Parsing

(McDonald et al., 2005)

• Key idea: a non-projective dependency parse is a

directed spanning tree where

– vertices = words

– directed edges = parent-to-child relations

• Well-known problem: minimum-cost spanning tree

• Solution: Chu-Liu-Edmonds algorithm (cubic)

– Good news: fast! can now recover non-projective trees!

– Bad news: much larger search space, potential for error

Breaking Independence Assumptions

• Adding labels doesn’t fundamentally change Eisner or MST

• What about edge-factoring?

• Projective case: local statistical dependence among same-side

children of a given head - still cubic (Eisner and Satta, 1999).

• Non-projective parsing with any kind of second-order features

(e.g., on adjacent edges) is NP-hard.

– McDonald explored approximations in his thesis

– Find the best projective parse and then rearrange the edges as long as

the score improves - O(n3)

– ILP (Martins et al., 2009)

CoNLL Tasks

• Dependency parsing is now more popular than constituency parsing

– Just showed a very basic framework

– But much current work builds on similar frameworks

• 2006 and 2007: dependency parsing on a variety of languages was

the shared task at CoNLL - a few dozen systems.

– Many of the datasets are freely available.

– Parsing papers now typically evaluate on most or all of these datasets.

• CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to

Universal Dependencies

– Followup in CoNLL 2018d

Parsing in 2011

Current Research Directions

• Better learning for parsing (e.g., max margin as in
Taskar et al., 2004; CRFs as in Finkel et al., 2008;
many other ͆parsing͇ papers that are really
about learning for structured prediction)

• Integrating learning and search (Petrov, 2009)

• Synchronous grammars in machine translation;
bilingual parsing

• Richer formalisms (CCG, TAG, unification-based
grammars)

• Integrating parsing with morphological or
semantic analysis

