Soft Inference and Posterior Marginals

21 February 2018

The questions we answered so far

- "What is the best path through this graph"
- "What is the state sequence underlying this string"
- "Is this string a part of this language"
- "How do you compose this string, with this language"
- Decisive answers to definitive questions
- "Hard" inference

"Soft" questions

- How probable is it for this language to produce this symbol sequence?
- How likely is it that the word "feed" here is a noun and not a verb?
- How likely is this segment to be a constituent?
- How probable is it that rule X → YZ has been used in composing this sentence
- "Confidence"-type answers to questions about certainty
- "Soft" inference

Soft vs. Hard Inference

- Hard inference
 - "Give me a single solution"
 - Viterbi algorithm
 - Maximum spanning tree (Chu-Liu-Edmonds alg.)
- Soft inference
 - Task 1: Compute a distribution over outputs
 - Task 2: Compute functions on distribution
 - marginal probabilities, expected values, entropies, divergences

Why Soft Inference?

- Useful applications of posterior distributions
 - **Entropy**: how confused is the model?
 - Entropy: how confused is the model of its prediction at time *i*?
 - Expectations
 - What is the expected number of words in a translation of this sentence?
 - What is the expected number of times a word ending in –ed was tagged as something other than a verb?
 - Posterior marginals: given some input, how likely is it that some (*latent*) event of interest happened?

What we will cover

 Soft inference can be applied to any probabilistically defined model

Or weighted model in general

- We will specifically look at soft inference in
 - Regular grammars
 - FSGs / PFSGs
 - Context free grammars
 - HMMs / CFGs / PCFGs

Inference in Regular Languages

- Regular languages can be recognized by a DFA or an NDFA
 - Question answered: "Does this string belong to this language"
- Can we answer : *Is the state "b" visited in recognizing "00011"*
 - DFA: Yes
 - NDFA: No
 - How about how likely is it that the state "b" was visited in recognizing "b"?

The probabilistic (finite) automaton

- Probabilistic extension of NDFA
- Conventional NDFA rules:

{init}

- State s_i can transition to both s_j and s_k after absorbing symbol a
- PFA rules:

 $s_i \xrightarrow{a} s_j(0.2)$ $s_i \xrightarrow{a} s_k(0.8)$

The different transitions have probabilities

$$\sum_{k} P(s_i \xrightarrow{a} s_k) = 1.0$$

Note: The distribution (which sums to 1.0) is specific to state-symbol combination (not just state)

Inference in Regular Languages

- What is the probability that the state "b" is visited in recognizing "00011"
- Can now view the recognition as a random walk *through the state sequences* that can "absorb" 00011
- What is the probability that the state "b" was visited in recognizing 00011

- What is the probability that the state "b" is visited in recognizing "00011"
- Can now view the recognition as a random walk *through the state sequences* that can "absorb" 00011
- What is the probability that the state "b" was visited in recognizing 00011

aacbe P = 0.004
aaabe P = 0.0032
aaade P = 0.0008
Why don't these sum to 1.0? Hint: figure is incomplete, but it doesn't affect our computation

- What is the probability that the state "b" is visited in recognizing "00011"
- Can now view the recognition as a random walk *through the state sequences* that can "absorb" 00011
- What is the probability that the state "b" was visited in recognizing 00011

• We aren't interested in state sequences which end in ϕ

- What is the probability that the state "b" is visited in recognizing "00011"
 - Given that the final state was e!
- Can now view the recognition as a random walk *through the state sequences* that can "absorb" 00011
- What is the probability that the state "b" was visited in recognizing 00011

• Note that we really need the probabilistic framework to make this statement

- The PFA is actually a probability distribution over strings!!

- But the naïve computation we just performed is not scalable
 - Need an efficient algorithm!

 $0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$

 Plot all the state sequences (ending in "e") that can "consume" the symbol sequence to the right

- Convert the string to an FSA
 - Note that the symbols appear on the *edges*
 - This is a DFA because the observed string is definitive
 - Will address what happens when we are unsure of observation later

• Redrawing it linearly for illustration..

- Redrawing it linearly (and rotating it) for illustration..
 - Lets compose the two graphs!

- This graph shows all paths that can consume *any* sequence of seven symbols
- But we are only interested in the paths that consume the actual observation

• Cleanup: Eliminate all nodes without incoming edges, and all nodes (except in the last column) without outgoing edges

• The complete set of all paths that can absorb the observed sequence

– But what weights do the edges carry?

The complete set of all paths that can absorb the observed sequence
 Edges carry the probability of the particular symbol absorbed

- The probability of any given state sequence is the product of the probabilities on all the edges representing the state sequence
 - The probability of *a c c c b c b e* is 0.1

• The total probability of visiting "c" is the total probability of all paths that go through "c" and end at "e"

• The total probability of all paths that get to the final state "e" is the probability of the entire graph

• The total probability of all paths that get to the final state "e" is the probability of the entire graph

Composition and computation

- Composition and computation can be done dynamically as one processes the input string
- Alternately, one may use any of the FSA composition algorithms in the literature (and tools available on the web)
 - These can be highly efficient

Dealing with uncertainty..

• Easily adapted to deal with uncertainty..

- Uncertainty is reflected in the input string
- The rest of the process remains largely unchanged

Moving on: Generative models

- Hidden Markov Models
 - "Stochastic functions of Markov Chains"

• E.g. a finite-state automaton over tags, that can generate word sequences

Initial Probabilities:

 $\bigcirc \longrightarrow \textbf{DET ADJ NN V} \\ 0.5 \quad 0.1 \quad 0.3 \quad 0.1 \end{aligned}$

η Transition Probabilities:

-
)
2

0.2

0.3

0.2

0.1

0.19

0.01

γ Emission Probabilities:

DET		ADJ		NN	NN			
the	0.7	green	0.1	book	0.3	might		
а	0.3	big	0.4	plants	0.2	watch		
		old	0.4	people	0.2	watches		
		might	0.1	person	0.1	loves		
				John	0.1	reads		
				watch	0.1	books		

Examples:

String Marginals

• Inference question for HMMs

What is the probability of a string w?
 Answer: generate all possible tag sequences and explicitly *marginalize*

 $O(|\Omega|^{|\mathbf{w}|})$ time

Initial Probabilities:

 $\bigcirc \longrightarrow \textbf{DET ADJ NN V} \\ 0.5 \quad 0.1 \quad 0.3 \quad 0.1 \end{aligned}$

η Transition Probabilities:

-
)
2

0.2

0.3

0.2

0.1

0.19

0.01

γ Emission Probabilities:

DET		ADJ		NN	NN			
the	0.7	green	0.1	book	0.3	might		
а	0.3	big	0.4	plants	0.2	watch		
		old	0.4	people	0.2	watches		
		might	0.1	person	0.1	loves		
				John	0.1	reads		
				watch	0.1	books		

Examples:

John	might	watch	$\Pr(x,y)$	John	might	watch	$\operatorname{Pr}(x,y)$	John	might	watch	$\operatorname{Pr}(x,y)$	John	might	watch	$\Pr(x,y)$
DET	DET	DET	0.0	ADJ	DET	DET	0.0	NN	DET	DET	0.0	V	DET	DET	0.0
DET	DET	ADJ	0.0	ADJ	DET	ADJ	0.0	NN	DET	ADJ	0.0	V	DET	ADJ	0.0
DET	DET	NN	0.0	ADJ	DET	NN	0.0	NN	DET	NN	0.0	V	DET	NN	0.0
DET	DET	V	0.0	ADJ	DET	V	0.0	NN	DET	V	0.0	V	DET	V	0.0
DET	ADJ	DET	0.0	ADJ	ADJ	DET	0.0	NN	ADJ	DET	0.0	V	ADJ	DET	0.0
DET	ADJ	ADJ	0.0	ADJ	ADJ	ADJ	0.0	NN	ADJ	ADJ	0.0	V	ADJ	ADJ	0.0
DET	ADJ	NN	0.0	ADJ	ADJ	NN	0.0	NN	ADJ	NN	0.0000042	V	ADJ	NN	0.0
DET	ADJ	V	0.0	ADJ	ADJ	V	0.0	NN	ADJ	V	0.000009	V	ADJ	V	0.0
DET	NN	DET	0.0	ADJ	NN	DET	0.0	NN	NN	DET	0.0	V	NN	DET	0.0
DET	NN	ADJ	0.0	ADJ	NN	ADJ	0.0	NN	NN	ADJ	0.0	V	NN	ADJ	0.0
DET	NN	NN	0.0	ADJ	NN	NN	0.0	NN	NN	NN	0.0	V	NN	NN	0.0
DET	NN	V	0.0	ADJ	NN	V	0.0	NN	NN	V	0.0	V	NN	V	0.0
DET	V	DET	0.0	ADJ	V	DET	0.0	NN	V	DET	0.0	V	V	DET	0.0
DET	V	ADJ	0.0	ADJ	V	ADJ	0.0	NN	V	ADJ	0.0	V	V	ADJ	0.0
DET	V	NN	0.0	ADJ	V	NN	0.0	NN	V	NN	0.0000096	V	V	NN	0.0
DET	V	V	0.0	ADJ	V	V	0.0	NN	V	V	0.000072	V	V	V	0.0

John might watch Pr(x, y)John might watch Pr(x, y)John might watch Pr(x, y)John might watchPr(x, y)DET DET ADJ DET DET DET DET V DET DET DET 0.0 0.0 NN 0.0 0.0 DET ADJ DET ADJ ADJ DET ADJ DET 0.0 ADJ 0.0 NN DET 0.0 V 0.0 NN DET DET DET 0.0 ADJ DET NN 0.0 NN DET NN 0.0 V NN 0.0 DET DET V 0.0 ADJ DET V 0.0 NN DET V 0.0 V DET V 0.0 ADJ ADJ ADJ DET DET 0.0 DET 0.0 NN ADJ DET 0.0 V ADJ DET 0.0 DET ADJ ADJ ADJ ADJ ADJ ADJ ADJ 0.0 0.0 NN ADJ 0.0 V ADJ 0.0 DET ADJ NN 0.0 ADJ ADJ NN 0.0 NN ADJ NN 0.0000042 ADJ NN 0.0 V DET ADJ V 0.0 ADJ ADJ V 0.0 NN ADJ V 0.000009 V ADJ V 0.0 DET NN DET 0.0 ADJ NN DET 0.0 NN NN DET 0.0 NN DET 0.0 V DET NN ADJ 0.0 ADJ NN ADJ 0.0 NN NN ADJ 0.0 V NN ADJ 0.0 DET NN NN 0.0 ADJ NN NN 0.0 NN NN NN 0.0 V NN NN 0.0 DET NN V 0.0 ADJ NN V 0.0 NN NN V 0.0 V NN V 0.0 DET V DET 0.0 ADJ V DET 0.0 NN V DET 0.0 V V DET 0.0 DET ADJ 0.0 ADJ V ADJ 0.0 NN ADJ 0.0 V V ADJ 0.0 V V DET V NN 0.0 ADJ V NN 0.0 NN V NN 0.0000096 V V NN 0.0 DET V V 0.0 ADJ V V 0.0 NN V V 0.0000072 V V V 0.0

p = 0.0000219
John	might	watch	$\operatorname{Pr}(x,y)$	John	might	watch	$\operatorname{Pr}(x,y)$	John	might	watch	$\operatorname{Pr}(x,y)$	John	might	watch	ו $\Pr(x,y)$
DET	DET	DET	0.0	ADJ	DET	DET	0.0	NN	DET	DET	0.0	V	DET	DET	0.0
DET	DET	ADJ	0.0	ADJ	DET	ADJ	0.0	NN	DET	ADJ	0.0	V	DET	ADJ	0.0
DET	DET	NN	0.0	ADJ	DET	NN	0.0	NN	DET	NN	0.0	V	DET	NN	0.0
DET	DET	V	0.0	ADJ	DET	V	0.0	NN	DET	V	0.0	V	DET	V	0.0
DET	ADJ	DET	0.0	ADJ	ADJ	DET	0.0	NN	ADJ	DET	0.0	V	ADJ	DET	0.0
DET	ADJ	ADJ	0.0	ADJ	ADJ	ADJ	0.0	NN	ADJ	ADJ	0.0	V	ADJ	ADJ	0.0
DET	ADJ	NN	0.0	ADJ	ADJ	NN	0.0	NN	ADJ	NN	0.0000042	V	ADJ	NN	0.0
DET	ADJ	V	0.0	ADJ	ADJ	V	0.0	NN	ADJ	V	0.000009	V	ADJ	V	0.0
DET	NN	DET	0.0	ADJ	NN	DET	0.0	NN	NN	DET	0.0	V	NN	DET	0.0
DET	NN	ADJ	0.0	ADJ	NN	ADJ	0.0	NN	NN	ADJ	0.0	V	NN	ADJ	0.0
DET	NN	NN	0.0	ADJ	NN	NN	0.0	NN	NN	NN	0.0	V	NN	NN	0.0
DET	NN	V	0.0	ADJ	NN	V	0.0	NN	NN	V	0.0	V	NN	V	0.0
DET	V	DET	0.0	ADJ	V	DET	0.0	NN	V	DET	0.0	V	V	DET	0.0
DET	V	ADJ	0.0	ADJ	V	ADJ	0.0	NN	V	ADJ	0.0	V	V	ADJ	0.0
DET	V	NN	0.0	ADJ	V	NN	0.0	NN	V	NN	0.0000096	V	V	NN	0.0
DET	V	V	0.0	ADJ	V	V	0.0	NN	V	V	0.000072	V	V	V	0.0

Exponential computation, if done naïvely. $\ p=0.0000219$

A different perspective

• "Graphical" view of the generative process..

JOHN

JOHN MIGHT WATCH

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1

JOHN MIGHT WATCH

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1

JOHN MIGHT WATCH

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1

JOHN MIGHT WATCH

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1

ADJ		V	
green	0.1	might	0.2
big	0.4	watch	0.3
old	0.4	watches	0.2
might	0.1	loves	0.1
		reads	0.19
		books	0.01

 $P(s_1 = NN, x_1 = JOHN) = 0.3 \times 0.1$

 $P(s_1 = NN, x_1 = JOHN, s_2 = ADJ) = 0.3 \times 0.1 \times 0.1$

 $P(s_1 = NN, x_1 = JOHN, s_2 = ADJ, x_2 = MIGHT) = 0.3 \times 0.1 \times 0.1 \times 0.1$

This is the "trellis" that shows all possible ways of generating the word sequence $P(s_1 = NN, x_1 = JOHN, s_2 = ADJ, x_2 = MIGHT, s_3 = NN)$ $= 0.3 \times 0.1 \times 0.1 \times 0.1 \times 0.7$

This is the "trellis" that shows all possible ways of generating the word sequence $P(s_1 = NN, x_1 = JOHN, s_2 = ADJ, x_2 = MIGHT, s_3 = NN, x_3 = WATCH)$ $= 0.3 \times 0.1 \times 0.1 \times 0.1 \times 0.7$

This is the "trellis" that shows all possible ways of generating the word sequence $P(s_1 = NN, x_1 = JOHN, s_2 = ADJ, x_2 = MIGHT, s_3 = NN, x_3 = WATCH, s_4 = STOP)$ $= 0.3 \times 0.1 \times 0.1 \times 0.1 \times 0.7 \times 0.2$

This is the "trellis" that shows all possible ways of generating the word sequence $P(s_1 = NN, x_1 = JOHN, s_2 = ADJ, x_2 = MIGHT, s_3 = NN, x_3 = WATCH, s_4 = STOP)$ $= 0.3 \times 0.1 \times 0.1 \times 0.1 \times 0.7 \times 0.2$

DP Argument: For a Markov process, the best N-length path to any state *must* be an extension of a best N-1 length path to some state

The Viterbi Algorithm

Probability of the most likely state sequence that ends at state s_t at t and produces $x_1 \dots x_t$

$$\begin{aligned} \max_{s_1 s_2, \dots, s_{t-1}} P(s_1, x_1, \dots, s_t, x_t) \\ &= \max_{s_1 s_2, \dots, s_{t-1}} P(s_1, x_1, \dots, s_{t-1}, x_{t-1}) \eta(s_{t-1} \to s_t) \gamma(s_t \downarrow x_t) \\ &= \max_{s_{t-1}} \max_{s_1 s_2, \dots, s_{t-2}} P(s_1, x_1, \dots, s_{t-1}, x_{t-1}) \eta(s_{t-1} \to s_t) \gamma(s_t \downarrow x_t) \end{aligned}$$

2

Probability of the most likely state sequence that ends at state s_{t-1} at t - 1 and produces $x_1 \dots x_{t-1}$

 The probabilities are decomposed in a manner suited to DP

Viterbi

$$\max_{s_1s_2,\dots,s_{t-1}} P(s_1, x_1, \dots, s_t, x_t)$$

= $\max_{s_{t-1}} \max_{s_1s_2,\dots,s_{t-2}} P(s_1, x_1, \dots, s_{t-1}, x_{t-1}) \eta(s_{t-1} \to s_t) \gamma(s_t \downarrow x_t)$

- Let $max_{s_1s_2,...,s_{t-1}}P(s_1, x_1, ..., s_t, x_t) = R(s_t, t)$
- for t = 1:T $h(s,t) = \operatorname{argmax} R(s',t-1)\eta(s' \to s)$ R(s,t) = R(h(s,t),t-1) $\eta(h(s,t) \to s_t)\gamma(s \downarrow x_t)$

 $R(s,1) = P_{in}(s)\gamma(s \downarrow x_1)$

$$h(s,t) = \underset{s'}{\operatorname{argmax}} R(s',t-1)\eta(s' \to s)$$

$$h(s,t) = \underset{s'}{\operatorname{argmax}} R(s',t-1)\eta(s' \to s)$$

String Marginals

- Inference question for HMMs
 - What is the probability of a string w?
 Answer: generate all possible tag sequences and explicitly marginalize

 $O(|\Omega|^{|\mathbf{w}|})$ time

Can we do this efficiently?

Forward Algorithm

- How to compute: use the forward algorithm
- Analogous to Viterbi
 - Instead of computing a max of inputs at each node, use addition
- Same run-time, same space requirements

$$O(|\Omega|^2 imes |\mathbf{w}|)$$
 time $O(|\Omega|)$ space

Define

$$\alpha_t(s) = P(x_1 \dots x_t, s_t = s)$$

• The probability of generating $x_1 \dots x_t$ such that the process is in state *s* at time *t*

String Marginals

 $\alpha_2(ADJ)$ is the probability of producing JOHN MIGHT such that the second word is an adjective

This is the total probability of all paths leading to ADJ at t=2, while producing JOHN MIGHT

Forward Algorithm Recurrence

$$\alpha_0(\text{START}) = 1$$

$$\alpha_t(r) = \sum_{q \in \Omega} \alpha_{t-1}(q)\eta(q \to r)\gamma(r \downarrow x_t)$$

Forward Algorithm

 $\alpha_0(START)$

Forward Algorithm

 $\alpha_1(s) = \alpha_0(START)\eta(START \to s) \gamma(s \downarrow x_1)$

Forward Algorithm

Viterbi : Find the best path (most probable)

Forward Algorithm

p = 0.0000219

- Marginal inference question for HMMs
 - Posterior Marginal: Given x, what is the probability of being in a state q at time t?
 - Marginal: What is the probability of x and being in state q at time t?

$$p(s_t = q | x_1, \dots, x_T) \propto p(x_1, \dots, x_T, s_t = q) = p(x_1, \dots, x_t, s_t = q, x_{t+1}, \dots, x_T)$$

The marginal of ADJ at t=2 is the total probability of all paths that go through ADJ at t=2

- Marginal inference question for HMMs
 - State: Given x, what is the probability of being in a state q at time t?

$$p(s_t = q | x_1, \dots, x_T) \propto p(x_1, \dots, x_T, s_t = q) = p(x_1, \dots, x_t, s_t = q, x_{t+1}, \dots, x_T)$$

– Transition: Given x, what is the probability of transitioning from state q to r at time t?

$$p(s_t = q, s_{t+1} = r | x_1, \dots, x_T) \propto p(x_1, \dots, x_T, s_t = q, s_{t+1} = r)$$

= $p(x_1, \dots, x_t, s_t = q, s_{t+1} = r, x_{t+1}, \dots, x_T)$

- Marginal inference question for HMMs
 - State: What is the probability of x and being in a state q at time t?

$$p(x_1, \dots, x_T, s_t = q) = p(x_1, \dots, x_t, s_t = q)p(x_{t+1}, \dots, x_T | s_t = q)$$

 Transition: What is the probability of x and of transitioning from state q to r at time t?

$$p(x_1, \dots, x_T, s_t = q, s_{t+1} = r)$$

= $p(x_1, \dots, x_t, s_t = q) \eta(q \to r) \gamma(r \downarrow x_{t+1}) p(x_{t+1}, \dots, x_T | s_{t+1} = r)$

- Marginal inference question for HMMs
 - State: What is the probability of x and being in a state q at time t?

$$p(x_1, \dots, x_T, s_t = q) = p(x_1, \dots, x_t, s_t = q) p(x_{t+1}, \dots, x_T | s_t = q)$$

– Transition: What is the probability of x and of transitioning from state q to r at time t?

$$p(x_1, \dots, x_T, s_t = q, s_{t+1} = r) = p(x_1, \dots, x_t, s_t = q) \eta(q \to r) \gamma(r \downarrow x_{t+1}) p(x_{t+1}, \dots, x_T | s_{t+1} = r)$$

- Marginal inference question for HMMs
 - State: What is the probability of x and being in a state q at time t?

$$p(x_1, \dots, x_T, s_t = q) = p(x_1, \dots, x_t, s_t = q) \frac{p(x_{t+1}, \dots, x_T | s_t = q)}{p(x_{t+1}, \dots, x_T | s_t = q)}$$

– Transition: What is the probability of x and of transitioning from state q to r at time t?

$$p(x_1, \dots, x_T, s_t = q, s_{t+1} = r)$$

= $p(x_1, \dots, x_t, s_t = q) \eta(q \to r) \gamma(r \downarrow x_{t+1}) \frac{p(x_{t+1}, \dots, x_T | s_{t+1} = r)}{p(x_{t+1}, \dots, x_T | s_{t+1} = r)}$

The Backward Probability

$$P(x_{t+1}, \dots, x_T | s_t = q) = \sum_{s} P(x_{t+1}, \dots, x_T, s_{t+1} = r | s_t = q)$$

$$P(x_{t+1}, \dots, x_T, s_{t+1} = r | s_t = q) =$$

$$\eta(q \to s)\gamma(s \downarrow x_{t+1})P(x_{t+2}, \dots, x_T | s_{t+1} = r)$$

$$P(x_{t+1}, \dots, x_T | s_t = q) =$$

$$\sum_{s} \eta(q \to s) \gamma(s \downarrow x_{t+1}) P(x_{t+2}, \dots, x_T | s_{t+1} = r)$$

Backward Algorithm

$$P(x_{t+1}, \dots, x_T | s_t = q) = \sum_r \eta(q \to r) \gamma(r \downarrow x_{t+1}) P(x_{t+2}, \dots, x_T | s_{t+1} = r)$$

- Define $\beta_t(q) = P(x_{t+1}, ..., x_T | s_t = q)$
- Recursion

$$\beta_t(q) = \sum_r \eta(q \to r) \gamma(r \downarrow x_{i+1}) \beta_{t+1}(r)$$

Backward Algorithm

 Start at the goal node(s) and work backwards through the trellis

Backward Recurrence

$$\beta_{|\mathbf{x}|+1}(\text{STOP}) = 1$$

$$\beta_t(q) = \sum_{r \in \Omega} \eta(q \to r) \gamma(r \downarrow x_{t+1}) \beta_{t+1}(r)$$

- •

 - • •

 - •
 - - - $\mathbf{\hat{\beta}}_{|\mathbf{x}|+1}(\text{STOP}) = 1$

- - i=5

 $\beta_t(q) = \sum_{r \in \Omega} \eta(q \to r) \gamma(r \downarrow x_{t+1}) \beta_{t+1}(r)$

Backward Chart $\beta_t(q) = p(x_{t+1}, \dots, x_{|\mathbf{x}|} \mid y_t = q)$ С b • • • $\beta_3(s_2)$ i=4 i=5 i=3

$$\beta_t(q) = \sum_{r \in \Omega} \eta(q \to r) \gamma(r \downarrow x_{t+1}) \beta_{t+1}(r)$$

Forward-Backward

- Compute forward chart $\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$
- Compute backward chart $\beta_t(q) = p(x_{t+1}, \dots, x_{|\mathbf{x}|}, \text{STOP} \mid y_t = q)$

Forward Backward

The forward and backwards probabilities

Forward-Backward

- Compute forward chart $\alpha_t(q) = p(\text{START}, x_1, \dots, x_t, y_t = q)$
- Compute backward chart $\beta_t(q) = p(x_{t+1}, \dots, x_{|\mathbf{x}|}, \text{STOP} \mid y_t = q)$ $\alpha_t(q) \times \beta_t(q)$
- $= p(START, x_1, ..., x_t | y_t = q) p(x_{t+1}, ..., x_T, STOP | y_t = q)$

$$p(\mathbf{x}, y_t = q) = \alpha_t(q) \times \beta_t(q)$$

Edge probability

• What is the probability that **x** was generated and $q \rightarrow r$ happened at time *t*?

$$p(x_{1}, ..., x_{T}, s_{t} = q, s_{t+1} = r) =$$

$$p(x_{1}, ..., x_{t}, s_{t} = q)$$

$$\eta(q \to r)\gamma(r \downarrow x_{t+1})$$

$$p(x_{t+1}, ..., x_{T} | s_{t+1} = r)$$

Edge probability

• What is the probability that **x** was generated and $q \rightarrow r$ happened at time *t*?

$$p(x_{1}, ..., x_{T}, s_{t} = q, s_{t+1} = r) =$$

$$p(x_{1}, ..., x_{t}, s_{t} = q)$$

$$\eta(q \to r)\gamma(r \downarrow x_{t+1})$$

$$p(x_{t+1}, ..., x_{T} | s_{t+1} = r)$$

$$\alpha_t(q)\eta(q\to r)\gamma(r\downarrow x_{t+1})\beta_{t+1}(r)$$

Forward-Backward

 $p(x_1, \dots, x_T, s_t = q, s_{t+1} = r) = \alpha_t(q)\eta(q \rightarrow r)\gamma(r \rightarrow x_{t+1})\beta_{t+1}(r)$

Actual Marginals

Posterior Marginal

$$p(s_i = q | x_1, \dots, x_T) = \frac{p(x_1, \dots, x_T, s_i = q)}{p(x_1, \dots, x_T)} = \frac{\alpha_t(q)\beta_t(q)}{\alpha_{T+1}(STOP)}$$

• Edge Marginal

 $p(s_i = q, s_{i+1} = r | x_1, \dots, x_T) = \frac{\alpha_t(q)\eta(q \to r)\gamma(r \to x_{i+1})\beta_{t+1}(r)}{\alpha_{T+1}(STOP)}$

RECAP: Inference from PFA

- The probability of any given state sequence is the product of the probabilities on all the edges representing the state sequence
 - The probability of *a c c c b c b e* is 0.1

Recap: Inference on HMMs

The forward and backwards probabilities

What we've done

- Able to answer questions about marginal distributions of components of finite-state models of language
 - Finite state grammars
 - HMMs
- E.g.
 - How probable is state q at time t, given x
 - E.g. how likely is it that the second word in "John might watch" is an adjective
 - How probable is the state transition $q \rightarrow r$ at time t, given **x**
 - E.g. how likely is it that "might watch" consists of an adjective followed by a verb

A different problem

- We've answered the following questions:
 - How probable is state q at time t, given x
 - How probable is the state transition $q \rightarrow r$ at time *t*, given **x**
- More generic question:
 - How probable is it that the process visited state q, given x
 - Is there an adjective in "John might watch"?
 - How probable is it that the transition $q \rightarrow r$ occurred, given **x**
 - Does the sentence have an adjective followed by a verb?

HMMs are PCFGs too

Initial Probabilities:

η Transition Probabilities:

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1

γ Emission Probabilities:

DET		ADJ	
the	0.7	green	0.1
а	0.3	big	0.4
		old	0.4
		might	0.1

NN		V	
book	0.3	might	0.2
plants	0.2	watch	0.3
people	0.2	watches	0.2
person	0.1	loves	0.1
John	0.1	reads	0.19
watch	0.1	books	0.01

EXERCISE: Convert this HMM to a PCFG

HMM→PCFG

 Split a state into State-transition NT and Stateemission NT

$$S \rightarrow Q_i \{Q_i = ADJ, NN, DET, V\} P_{in}(Q_i)$$
$$Q_i \rightarrow E_i Q_j \{Q_j = ADJ, NN, DET, V, STOP\} P(Q_j | Q_i)$$
$$E_i \rightarrow word P(word | E_i)$$

• Note: We do not define the second rule for the *STOP* state

HMMs can be cast as PFAs too

Initial Probabilities:

Transition Probabilities: Ί.

	DET	ADJ	NN	V
DET	0.0	0.0	0.0	0.5
ADJ	0.3	0.2	0.1	0.1
NN	0.7	0.7	0.3	0.2
V	0.0	0.1	0.4	0.1
	0.0	0.0	0.2	0.1

Emission Probabilities:

DET		ADJ
the	0.7	green
а	0.3	big
		old
		might

NN		V	
book	0.3	might	0.2
plants	0.2	watch	0.3
people	0.2	watches	0.2
person	0.1	loves	0.1
John	0.1	reads	0.19
watch	0.1	books	0.01

EXERCISE: Convert this HMM to a PFA

0.1

0.4

0.4

0.1

HMM→PFA

• First, recall an earlier grammar

- We aren't interested in state sequences which end in ϕ .
 - So no need to explicitly represent it

HMM \rightarrow PFA: Back to our grammar

- Let $Q = \{ADJ, NN, V, DET, STOP\}$
- Let $W = \{w_1, w_2, \dots, w_N, \blacksquare\}$
 - is a termination symbol to signify end of sentence
- PFA:

$$\pi(Q_i) = P_{in}(Q_i)$$
$$Q_i \xrightarrow{w} Q_j : P = P(Q_j | Q_i) P(w | Q_i) \quad \forall i, j, w$$
A different problem

- We've answered the following questions:
 - How probable is state q at time t, given x
 - How probable is the state transition $q \rightarrow r$ at time t, given **x**
- More generic question:
 - How probable is it that the process visited state q, given x
 - E.g. does the sentence have an adjective

• $P(state s = visited, \mathbf{x})$ is the probability that s is visited at least once.

– E.g. "What is the probability that at least one of the words is an adjective

- This is the total probability of the subset of the trellis where every path from start to end visits state *s* (e.g. ADJ) at least once
 - Its generally difficult or impossible to isolate this portion of the trellis

Derivation by ablation

•
$$p(\mathbf{x}) = p(s, \mathbf{x}) + p(\bar{s}, \mathbf{x})$$

– s = state s is visited at least once

$$-\overline{s}$$
 = state *s* is never visited

•
$$p(s, \mathbf{x}) = p(\mathbf{x}) - p(\overline{s}, \mathbf{x})$$

•
$$p(s|\mathbf{x}) = 1 - \frac{p(\bar{s},\mathbf{x})}{p(\mathbf{x})}$$

• The portion of the trellis where *no* path visits state *s*

This is complete; there are no other paths that do not visit s

- The portion of the trellis where *no* path visits state *s*
 - This is complete; there are no other paths that do not visit s
 - The total probability of this trellis is $p(\bar{s}, \mathbf{x})$
 - Can be computed using the forward algorithm on this trellis

Derivation by ablation

•
$$p(\mathbf{x}) = p(s, \mathbf{x}) + p(\bar{s}, \mathbf{x})$$

-s = state s is visited at least once

 $-\bar{s}$ = state *s* is never visited

•
$$p(s, \mathbf{x}) = p(\mathbf{x}) - p(\bar{s}, \mathbf{x})$$

Computed by the forward algorithm on the *reduced* trellis

• $p(s|\mathbf{x}) = 1 - \frac{p(\bar{s},\mathbf{x})}{p(\mathbf{x})}$

Computed by the forward algorithm on the complete trellis

A different problem

- We've answered the following questions:
 - How probable is state q at time t, given x
 - How probable is the state transition $q \rightarrow r$ at time t, given **x**
- More generic question:
 - How probable is it that the process visited state q, given x
 - How probable is it that the transition $q \rightarrow r$ occurred, given **x**
 - E.g. Is an adjective followed by a verb in this sentence?

Visiting a transition

use the shown transition

No possible to isolate this portion of the trellis

 $-p(\mathbf{x}, state \ q \ is \ never \ followed \ by \ state \ r)$

- What is the probability that *both* state *s* AND state *r* were visited?
 - What is the probability that "John might watch" includes both a verb and an adjective?

Visiting multiple states

Again, not possible to isolate the corresponding portion of the trellis

NOT visiting multiple states

• What is the probability that *both* state *s* AND state *r* were visited? $p(s \cap r) = 1 - (p(\bar{s}) + p(\bar{r}) - p(\bar{s} \cup r))$

$$P(s, r, \mathbf{x}) = P(\mathbf{x}) - (P(\overline{s}, \mathbf{x}) + P(\overline{r}, \mathbf{x}) - P(\overline{s \cup r}, \mathbf{x}))$$

$$P(s, r | \mathbf{x}) = 1 - \frac{P(\bar{s}, \mathbf{x}) + P(\bar{r}, \mathbf{x}) - P(\bar{s} \cup r, \mathbf{x})}{P(\mathbf{x})}$$

• What is the probability that *both* state *s* AND state *r* were visited?

 $p(s \cap r) = \underbrace{1 \quad (m(\bar{s}) + m(\bar{x}))}_{\substack{\text{Computed from the Trellis} \\ with the r row removed}} p(\bar{s} \cup r))$ $\underbrace{p(s \cup r)}_{\substack{\text{Computed from the Trellis} \\ \text{with the s row removed}}} (\bar{s}, \mathbf{x}) + P(\bar{r}, \mathbf{x}) - r(s \cup r, \mathbf{x}))$

$$P(s, r | \mathbf{x}) = 1 - \frac{P(\bar{s}, \mathbf{x}) + P(\bar{r}, \mathbf{x}) - P(\bar{s} \cup r, \mathbf{x})}{P(\mathbf{x})}$$

Computed from the full Trellis

 Other more complex inferences can be similarly obtained

 Becomes increasingly more computationally expensive as the order of the inference increases

Higher-level grammars

- We have derived probabilistic inferences from PFAs and HMMs
- More generally we want similar inferences from CFGs and PCFGs
 - Given word sequence w, what is the probability of having a constituent of type Z from i to j?
 - 'A person who trusts no one can't be trusted' : what is the probability that the "A person who trusts no one" is a noun phrase?
 - Given w, what is the probability of having a constituent of any type from i to j?
 - What is the probability that 'A person...trusted' is any type of phrase
 - Given w, what is the probability of using rule Z -> XY to derive the span from i to j?
 - What is the probability that VP → V N generated "can't be trusted"
- That will require a generalization of the algorithms we just saw..

Generalizing Forward-Backward

- Inference in HMMs was performed using the forward-backward algorithm
 - Recall that HMMs are instances of PCFGs
- For more general PCFGs we will use the insideoutside algorithm
 - A generalization of the forward backward algorithm
 - Builds upon the CKY algorithm

Inside/Outside Algorithm

Have you seen this man somewhere?

• "Trainable grammars for speech recognition," J. K. Baker, 1979

Inferences we would like to make..

- What is the probability of "dogs in houses and cats"?
- What is the probability that "houses and cats" is a clause by itself?
 - What is the probability that its an *NP*?
- Is there a *PP* in the sentence?

Inferences we would like to make..

- Which of the probability of "dogs in houses and cats"
 - P("dogs in houses and cats")
- What is the probability that "houses and cats" is a clause by itself?
 - P("houses and cats" = clause | "dogs in houses and cats")
- What is the probability that its an NP?
 - P("houses and cats" = NP | "dogs in houses and cats")
- Is there a *PP* in the sentence?
 - P(PP | "dogs in houses and cats")

Recall the CKY algorithm

- Given: A PCFG in CNF, and a word sequence
- Build a skeleton that can hold every possible tree

Recall the CKY algorithm

• *Each* box in the grid (potentially) holds *every* non-terminal

Inferences we would like to make..

- Which of the probability of "dogs in houses and cats"
 - P("dogs in houses and cats")
- What is the probability that "houses and cats" is a clause by itself?
 - P("houses and cats" = clause | "dogs in houses and cats")
- What is the probability that its an NP?
 - P("houses and cats" = NP | "dogs in houses and cats")
- Is there a *PP* in the sentence?
 - P(PP | "dogs in houses and cats")

Probability computation using CKY

- What we desire to compute:
 - $-P(w_1, ..., w_N)$: Probability of producing the word sequence
 - Total possibility of every possible tree that could produce the word sequence

The Inside Algorithm

 Let α(NT, i, j) be the probability that the non-terminal NT produced words w_i ... w_j (at the word positions i ... j within the sentence)

$$-\alpha(NT,i,j) = p(NT \to w_i \dots w_j) = p(w_i \dots w_j | c(i,j) = NT)$$

Each edge represents an ordered pairing of NTs from the corresponding cells

S (or any other orange NT) may expand out to any of the edges (This dependency could be represented by a three-way hyperedge)

 $P(S \rightarrow w_3 \dots w_5) = P(S \rightarrow S S)P(S \rightarrow w_3 \dots w_4)P(S \rightarrow w_5) + \cdots$

$$P(S \to w_3 \dots w_5) = \sum_{NT} P(S \to S NT) P(S \to w_3 \dots w_4) P(NT \to w_5) + \cdots$$

 $P(S \to w_3 \dots w_5) = \sum_{NT_a} \sum_{NT_b} P(S \to NT_a NT_b) P(NT_a \to w_3 \dots w_4) P(NT_b \to w_5) + \cdots$

$$P(S \to w_3 \dots w_5) = \sum_{NT_a, NT_b} P(S \to NT_a NT_b) P(NT_a \to w_3 \dots w_4) P(NT_b \to w_5) + \cdots$$

More generally

$$p(NT \to w_i \dots w_j) = \sum_k \sum_{NT_a} \sum_{NT_b} P(NT \to NT_a NT_b) P(NT_a \to w_i \dots w_k) P(NT_b \to w_{k+1} \dots w_j)$$

$$\alpha(NT, i, j) = \sum_{i \le k \le j} \sum_{NT_a, NT_b} P(NT \to NT_a NT_b) \alpha(NT_a, i, k) \alpha(NT_b, k+1, j)$$

Inferences we would like to make..

Inferences we would like to make..

The Conditional Probability

- What we desire to compute:
 - $P(NT \in c(i, j)|W)$: Probability that the cell spanning words $i \dots j$ contains the specific nonterminal NT, given the observed word sequence W
 - The probability that $w_i \dots w_j$ were produced by NT given the entire word sequence W

Conditional vs Joint

•
$$P(NT \in c(i,j)|W) = \frac{P(NT \in c(i,j),W)}{P(W)}$$

- We know how to compute the denominator
- So we must compute: $P(NT \in c(i, j), W)$

The Joint Probability NT W_1 W_2 W₃ W_4 Wς W_6 W_7 Wg

• $P(NT \in c(i, j), w_1 \dots w_N)$ is the total probability of the entire word sequence AND that cell c(i, j) contains NT $P(NT \in c(i, j), w_1 \dots w_N) = P(NT \rightarrow w_i \dots w_j, w_1 \dots w_N)$

 $= P(NT \rightarrow w_i \dots w_j, w_1 \dots w_{i-1}, w_{j+1} \dots w_N)$

The Joint Probability

- $P(NT \to w_i \dots w_j, w_1 \dots w_{i-1}, w_{j+1} \dots w_N) =$ $P(NT \to w_i \dots w_j)P(w_1 \dots w_{i-1}, w_{j+1} \dots w_N, c(i, j) = NT)$
- Note: The second term on the RHS explicitly takes advantage of the fact that for a CFG the NT isolates the rest of the sentence from the words produced by the NT

 Note: The second term on the RHS explicitly takes advantage of the fact that for a CFG the NT isolates the rest of the sentence from the words produced by the NT

The *Outside* Probability NT W_4 W₃ Ws W_1 W_2 W_6 W_7 Wg

- $P(w_1 \dots w_{i-1}, w_{j+1} \dots w_N, c(i, j) = NT)$
 - The probability of the words under the white region of the grid, conditioned on the pink node taking value NT

- Option 1: NT is part of a tree with a root at the Brown cell (w₂ .. w₇)
 - $-w_8$ is not part of the tree
 - Must generate $w_1..w_2$, w_8 *outside* the tree

• Option 1: NT is part of a tree with a root equal to S at the Brown cell $P(w_1 \dots w_2, w_7 \dots w_8, c(3,6) = NT) =$

$$P(w_1 \dots w_2, w_8, c(3,7) = S) \sum_{NT_b} P(S \to NT NT_b) P(NT_b \to w_7) + \cdots$$

Outside probability of (3,7)

• Option 1: NT is part of a tree with a root at the Brown cell $P(w_1 \dots w_2, w_7 \dots w_8, c(3,6) = NT) =$

$$\sum_{NT_a} P(w_1 \dots w_2, w_8, c(3,7) = NT_a) \sum_{NT_b} P(NT_a \to NT NT_b) P(NT_b \to w_7) + \cdots$$

 $P(w_1 \dots w_2, w_7 \dots w_8, c(3,6) = NT) =$

 W_1 W_2 W_3 W_4 W_5 W_6 W_7 W_8

Option 2: NT is part of a tree with a root at the Green cell

• Option 2: *NT* is part of a tree *with a root at the Green cell*

 $P(w_1 \dots w_2, w_7 \dots w_8, c(3, 6) = NT) =$

• Option 2: *NT* is part of a tree *with a root at the Green cell*

• Option 2: *NT* is part of a tree *with a root at the Green cell*

- Option 3: *NT* is part of a tree *with a root at the purple cell*
 - Note the counterpart cell of NT under the purple root
 - Now the outside part is w_1 , w_7 ... w_8

- Option 4: NT is part of a tree with a root at the blue cell
 - Note the counterpart cell of NT under the blue root
 - Now the outside part is $w_7 \dots w_8$

- Option 4: NT is part of a tree with a root at the blue cell
 - Note the counterpart cell of NT under the blue root
 - Now the outside part is $w_7 \dots w_8$

- Option 4: *NT* is part of a tree *with a root at the blue cell*
 - Note the counterpart cell of NT under the blue root
 - Now the outside part is $w_7 \dots w_8$

• Generic equation

• Generic equation

• Generic equation

 $P(w_1 \dots w_{i-1}, w_{j+1} \dots w_N, c(i, j) = NT) = \beta(NT, i, j)$

- Note: The computation of any outside probability β depends only on other betas *above* it and alphas *below* it
 - Beta computation requires preliminary computation of inside probabilities (alphas)
 - Given alpha, betas can now be computed recursively

For all NT: $\beta(NT, 1, N) = 1$

The Outside Recursion

Posterior Marginal

 $P(c(i,j) = NT, w_1 \dots w_N) = \alpha(NT, i, j)\beta(NT, i, j)$

• The posterior marginal is:

$$P(c(i,j) = NT|W) = \frac{\alpha(NT,i,j)\beta(NT,i,j)}{\alpha(S,1,N)}$$

Posterior Marginal

• The posterior marginal that $w_i \dots w_j$ is a constituent:

$$P(c(i,j)|W) = \sum_{NT} \frac{\alpha(NT, i, j)\beta(NT, i, j)}{\alpha(S, 1, N)}$$

Rule marginals

•
$$P(PP|W; G) = \frac{\alpha(S,1,N; G \setminus PP \, rules)}{\alpha(S,1,N; G)}$$

Does the sentence have both a VP and a PP?
 – Exercise for you..

Posterior Marginals

- Marginal inference question for PCFGs
 - Given w, what is the probability of having a constituent of type Z from i to j?
 - Given w, what is the probability of having a constituent of any type from i to j?
 - Given w, what is the probability of using rule
 Z -> XY to derive the span from i to j?

In Conclusion

- Have looked at a few ways of arriving at posterior marginal inferences for fininte-state and context-free grammars
- Similar approach extends to dependency grammars
 - If you can use DP and you can write probabilistic rules, you can derive probabilistic inferences
- Possibly one of the biggest uses for these methods is *learning*
 - Applicable in EM methods to *learn* grammars
 - Not a topic for today..