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The questions we answered so far

• “What is the best path through this graph”

• “What is the state sequence underlying this 
string”

• “Is this string a part of this language”

• “How do you compose this string, with this 
language”

• Decisive answers to definitive questions

• “Hard” inference



“Soft” questions

• How probable is it for this language to produce this symbol 
sequence?

• How likely is it that the word “feed” here is a noun and not 
a verb?

• How likely is this segment to be a constituent?

• How probable is it that rule X YZ has been used in 
composing this sentence

• “Confidence”-type answers to questions about certainty

• “Soft” inference



Soft vs. Hard Inference

• Hard inference
– “Give me a single solution”

– Viterbi algorithm

– Maximum spanning tree (Chu-Liu-Edmonds alg.)

• Soft inference
– Task 1: Compute a distribution over outputs

– Task 2: Compute functions on distribution
• marginal probabilities, expected values, entropies, 

divergences



Why Soft Inference?

• Useful applications of posterior distributions
– Entropy: how confused is the model?

– Entropy: how confused is the model of its prediction 
at time i?

– Expectations
• What is the expected number of words in a  translation of 

this sentence?

• What is the expected number of times a word ending in –ed
was tagged as something other than a verb?

– Posterior marginals: given some input, how likely is it 
that some (latent) event of interest happened?



What we will cover

• Soft inference can be applied to any 

probabilistically defined model

– Or weighted model in general

• We will specifically look at soft inference in

– Regular grammars

• FSGs / PFSGs 

– Context free grammars

• HMMs / CFGs / PCFGs



Inference in Regular Languages

• Regular languages can be recognized by a DFA or an NDFA

– Question answered: “Does this string belong to this language”

• Can we answer : Is the state “b” visited in recognizing “00011”

– DFA: Yes

– NDFA: No

• How about how likely is it that the state “b” was visited in recognizing “b”?
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The probabilistic (finite) automaton

• Probabilistic extension of NDFA

• Conventional NDFA rules:

𝑠𝑖 ՜
𝑎
𝑠𝑗

𝑠𝑖՜
𝑎
𝑠𝑘

– State 𝑠𝑖 can transition to both 𝑠𝑗 and 𝑠𝑘 after absorbing symbol 𝑎

• PFA rules:

𝑠𝑖 ՜
𝑎
𝑠𝑗(0.2)

𝑠𝑖՜
𝑎
𝑠𝑘(0.8)

– The different transitions have probabilities

– Note:  The distribution (which sums to 1.0) is specific to state-symbol 
combination (not just state)

Abstract probabilistic automata
Delahaye et al. (2013)



Inference in Regular Languages

• What is the probability that the state “b” is visited in recognizing “00011”

• Can now view the recognition as a random walk through the state 
sequences that can “absorb” 00011

• What is the probability that the state “b” was visited in recognizing 00011
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Inference in a PFA

• What is the probability that the state “b” is visited in recognizing “00011”

• Can now view the recognition as a random walk through the state 
sequences that can “absorb” 00011

• What is the probability that the state “b” was visited in recognizing 00011
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Inference in a PFA

• What is the probability that the state “b” is visited in recognizing “00011”

• Can now view the recognition as a random walk through the state 
sequences that can “absorb” 00011

• What is the probability that the state “b” was visited in recognizing 00011
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Why don’t these sum to 1.0?
Hint: figure is incomplete, but it
doesn’t affect our computation



Inference in a PFA

• We aren’t interested in state sequences which end in 𝜙
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Inference in a PFA

• What is the probability that the state “b” is visited in recognizing “00011”

– Given that the final state was e!

• Can now view the recognition as a random walk through the state sequences that 
can “absorb” 00011

• What is the probability that the state “b” was visited in recognizing 00011
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Inference in a PFA

• Note that we really need the probabilistic framework to make this 
statement

– The PFA is actually a probability distribution over strings!!

• But the naïve computation we just performed is not scalable

– Need an efficient algorithm!  
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Inference in a PFA

• Plot all the state sequences (ending in “e”) that 

can “consume” the symbol sequence to the 

right
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Inference in a PFA

• Convert the string to an FSA

– Note that the symbols appear on the edges

– This is a DFA because the observed string is definitive

• Will address what happens when we are unsure of observation later
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Inference in a PFA

• Redrawing it linearly for illustration..
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Inference in a PFA

• Redrawing it linearly (and rotating it) for illustration..

– Lets compose the two graphs!
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• This graph shows all paths that can consume any sequence of seven symbols

• But we are only interested in the paths that consume the actual observation 



• Cleanup:  Eliminate all nodes without incoming edges, and 
all nodes (except in the last column) without outgoing edges



• The complete set of all paths that can absorb the observed sequence

– But what weights do the edges carry?



• The complete set of all paths that can absorb the observed sequence

– Edges carry the probability of the particular symbol absorbed
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• The probability of any given state sequence is the product of the 
probabilities on all the edges representing the state sequence

– The probability of  a c c c b c b e is 0.1
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• The total probability of visiting “c” is the total probability of 
all paths that go through “c” and end at “e”
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• The total probability of all paths that get to the 

final state “e” is the probability of the entire graph
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• The total probability of all paths that get to the 

final state “e” is the probability of the entire graph
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The actual algorithm to compute these probabilities
is the forward-backward algorithm

We will get to that shortly



Composition and computation

• Composition and computation can be done 
dynamically as one processes the input string

• Alternately, one may use any of the FSA 
composition algorithms in the literature (and 
tools available on the web)

– These can be highly efficient



Dealing with uncertainty..

• Easily adapted to deal with uncertainty..
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Inference in a PFA

• Uncertainty is reflected in the input string

• The rest of the process remains largely unchanged
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Moving on: Generative models

• Hidden Markov Models

– “Stochastic functions of Markov Chains”

• E.g. a finite-state automaton over tags, that 
can generate word sequences
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String Marginals

• Inference question for HMMs

– What is the probability of a string w?
Answer: generate all possible tag sequences and 
explicitly marginalize

time
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A different perspective

• “Graphical” view of the generative process..
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NN 0.7 0.7 0.3 0.2

V 0.0 0.1 0.4 0.1

0.0 0.0 0.2 0.1
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This is the “trellis” that shows all possible ways of generating the word sequence

𝑃 𝑠1 = 𝑁𝑁, 𝑥1 = 𝐽𝑂𝐻𝑁, 𝑠2 = 𝐴𝐷𝐽, 𝑥2 = 𝑀𝐼𝐺𝐻𝑇, 𝑠3 = 𝑁𝑁, 𝑥3 = 𝑊𝐴𝑇𝐶𝐻, 𝑠4 = 𝑆𝑇𝑂𝑃
= 0.3 × 0.1 × 0.1 × 0.1 × 0.7 × 0.2

DET ADJ NN V

DET 0.0 0.0 0.0 0.5

ADJ 0.3 0.2 0.1 0.1

NN 0.7 0.7 0.3 0.2

V 0.0 0.1 0.4 0.1

0.0 0.0 0.2 0.1
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WATCH

This is the “trellis” that shows all possible ways of generating the word sequence

𝑃 𝑠1 , 𝑥1 , 𝑠2 , 𝑥2 , … , 𝑠𝑇 , 𝑥𝑇 , STOP = 𝑃𝑖𝑛(𝑠1)𝛾(𝑠1 ↓ 𝑥1)𝜂(𝑠1 ՜ 𝑠2) 𝛾 𝑠2 ↓ 𝑥2 …𝜂(𝑠𝑇 ՜ 𝑆𝑇𝑂𝑃)

𝑃 𝑠1 = 𝑁𝑁, 𝑥1 = 𝐽𝑂𝐻𝑁, 𝑠2 = 𝐴𝐷𝐽, 𝑥2 = 𝑀𝐼𝐺𝐻𝑇, 𝑠3 = 𝑁𝑁, 𝑥3 = 𝑊𝐴𝑇𝐶𝐻, 𝑠4 = 𝑆𝑇𝑂𝑃
= 0.3 × 0.1 × 0.1 × 0.1 × 0.7 × 0.2
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𝑃 𝑠1 , 𝑥1 , 𝑠2 , 𝑥2 , … , 𝑠𝑇 , 𝑥𝑇 , STOP = 𝑃𝑖𝑛(𝑠1)𝛾(𝑠1 ↓ 𝑥1)𝜂(𝑠1 ՜ 𝑠2) 𝛾 𝑠2 ↓ 𝑥2 …𝜂(𝑠𝑇 ՜ 𝑆𝑇𝑂𝑃)

Viterbi : Find the best path (most probable)



𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−1𝑃 𝑠1 , 𝑥1 , … , 𝑠𝑡 , 𝑥𝑡 = 𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−1𝑃 𝑠1 , 𝑥1 , … , 𝑠𝑡−1 , 𝑥𝑡−1
𝜂(𝑠𝑡−1 ՜ 𝑠𝑡) 𝛾 𝑠𝑡 ↓ 𝑥𝑡

Viterbi : Find the best path (most probable)

DP Argument:  For a Markov process,  the best N-length path to any state must be an
extension of a best N-1 length path to some state

0

0

0.1

0

JOHN

0

0.1

0

0.3

MIGHT

DET

ADJ

NN

V

WATCH

The most probable state sequence that ends at state st at time t



The Viterbi Algorithm

• The probabilities are decomposed in a manner 
suited to DP

𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−1𝑃 𝑠1 , 𝑥1, … , 𝑠𝑡 , 𝑥𝑡
= 𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−1𝑃 𝑠1 , 𝑥1, … , 𝑠𝑡−1, 𝑥𝑡−1 𝜂(𝑠𝑡−1 ՜ 𝑠𝑡) 𝛾 𝑠𝑡 ↓ 𝑥𝑡

= 𝑚𝑎𝑥𝑠𝑡−1𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−2𝑃 𝑠1, 𝑥1,… , 𝑠𝑡−1, 𝑥𝑡−1 𝜂(𝑠𝑡−1 ՜ 𝑠𝑡) 𝛾 𝑠𝑡 ↓ 𝑥𝑡

Probability of the most likely state sequence that ends at state 𝑠𝑡−1 at 𝑡 − 1 and
produces 𝑥1…𝑥𝑡−1

Probability of the most likely state sequence that ends at state 𝑠𝑡 at 𝑡 and
produces 𝑥1…𝑥𝑡



Viterbi

• Let 𝑚𝑎𝑥𝑠1𝑠2 ,…,𝑠𝑡−1𝑃 𝑠1, 𝑥1, … , 𝑠𝑡 , 𝑥𝑡 = 𝑅(𝑠𝑡 , 𝑡)

• for 𝑡 = 1: 𝑇
ℎ 𝑠, 𝑡 = argmax

𝑠′
𝑅 𝑠′, 𝑡 − 1 𝜂(𝑠′ ՜ 𝑠)

𝑅 𝑠, 𝑡 = 𝑅 ℎ 𝑠, 𝑡 , 𝑡 − 1

𝜂(ℎ 𝑠, 𝑡 ՜ 𝑠𝑡)𝛾 𝑠 ↓ 𝑥𝑡

𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−1𝑃 𝑠1 , 𝑥1, … , 𝑠𝑡 , 𝑥𝑡
=𝑚𝑎𝑥𝑠𝑡−1𝑚𝑎𝑥𝑠1𝑠2,…,𝑠𝑡−2𝑃 𝑠1, 𝑥1,… , 𝑠𝑡−1, 𝑥𝑡−1 𝜂(𝑠𝑡−1 ՜ 𝑠𝑡) 𝛾 𝑠𝑡 ↓ 𝑥𝑡



Viterbi Algorithm
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𝑅 𝑠, 1 = 𝑃𝑖𝑛(𝑠)𝛾 𝑠 ↓ 𝑥1



Viterbi Algorithm
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ℎ 𝑠, 𝑡 = argmax
𝑠′

𝑅 𝑠′, 𝑡 − 1 𝜂(𝑠′ ՜ 𝑠)



Viterbi Algorithm
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ℎ 𝑠, 𝑡 = argmax
𝑠′

𝑅 𝑠′, 𝑡 − 1 𝜂(𝑠′ ՜ 𝑠)



Viterbi Algorithm
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ℎ 𝑠, 𝑡 = argmax
𝑠′

𝑅 𝑠′, 𝑡 − 1 𝜂(𝑠′ ՜ 𝑠)

𝑅 𝑠, 𝑡 = 𝑅 ℎ 𝑠, 𝑡 , 𝑡 − 1 𝜂(ℎ 𝑠, 𝑡 ՜ 𝑠𝑡)𝛾 𝑠 ↓ 𝑥𝑡



Viterbi Algorithm

0

0

0.1

0

JOHN

0

0.1

0

0.3

MIGHT

DET

ADJ

NN

V

WATCH

ℎ 𝑠, 𝑡 = argmax
𝑠′

𝑅 𝑠′, 𝑡 − 1 𝜂(𝑠′ ՜ 𝑠)

𝑅 𝑠, 𝑡 = 𝑅 ℎ 𝑠, 𝑡 , 𝑡 − 1 𝜂(ℎ 𝑠, 𝑡 ՜ 𝑠𝑡)𝛾 𝑠 ↓ 𝑥𝑡



String Marginals

• Inference question for HMMs

– What is the probability of a string w?
Answer: generate all possible tag sequences and 
explicitly marginalize

Can we do this efficiently?

time



𝑃 𝑥1,… , 𝑥𝑡 = ෍

𝑠1𝑠2,…,𝑠𝑡−1

𝑃 𝑠1, 𝑥1, … , 𝑠𝑡 , 𝑥𝑡

Viterbi : Find the best path (most probable)

String Marginals
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The marginal probability of the word sequence is the total probability of
all paths through the trellis



Forward Algorithm

• How to compute: use the forward algorithm

• Analogous to Viterbi

– Instead of computing a max of inputs at each 
node, use addition

• Same run-time, same space requirements

time

space



Define

𝛼𝑡 𝑠 = 𝑃(𝑥1 …𝑥𝑡 , 𝑠𝑡 = 𝑠)

• The probability of generating 𝑥1…𝑥𝑡 such that 
the process is in state 𝑠 at time 𝑡



Viterbi : Find the best path (most probable)

String Marginals
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𝛼2 𝐴𝐷𝐽 is the probability of producing JOHN MIGHT such that the second word is an 
adjective
This is the total probability of all paths leading to ADJ at t=2, while producing JOHN MIGHT



Forward Algorithm Recurrence



Viterbi : Find the best path (most probable)

Forward Algorithm
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𝛼0(𝑆𝑇𝐴𝑅𝑇)



Viterbi : Find the best path (most probable)

Forward Algorithm
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𝛼1 𝑠 = 𝛼0 𝑆𝑇𝐴𝑅𝑇 𝜂(𝑆𝑇𝐴𝑅𝑇 ՜ 𝑠) 𝛾 𝑠 ↓ 𝑥1



Viterbi : Find the best path (most probable)

Forward Algorithm
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𝛼𝑡 𝑟 = ෍

𝑞∈Ω

𝛼𝑡−1(𝑞)𝜂 𝑞 ՜ 𝑟 𝛾 𝑟 ↓ 𝑥𝑡



Viterbi : Find the best path (most probable)

Forward Algorithm
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𝑃 𝑥1…𝑥𝑇 = 𝛼𝑇+1 𝑆𝑇𝑂𝑃



John

0.0

0.0

0.03

0.0
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0.0

0.0003

0.0

0.0024

watch

0.0

0.0

0.000069

0.000081

DET
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NN

V

0.0000219



Posterior Marginals

• Marginal inference question for HMMs
– Posterior Marginal: Given x, what is the 

probability of being in a state q at time t?

– Marginal: What is the probability of x and being in 
state q at time t?

𝑝 𝑠𝑡 = 𝑞 𝑥1, … , 𝑥𝑇 ∝ 𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞
= 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞, 𝑥𝑡+1, … , 𝑥𝑇



Posterior Marginals
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The marginal of ADJ at t=2 is the total probability of all paths that go through ADJ at t=2



Posterior Marginals

• Marginal inference question for HMMs
– State: Given x, what is the probability of being in a 

state q at time t?

– Transition: Given x, what is the probability of 
transitioning from state q to r at time t?

𝑝 𝑠𝑡 = 𝑞 𝑥1, … , 𝑥𝑇 ∝ 𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞
= 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞, 𝑥𝑡+1, … , 𝑥𝑇

𝑝 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟 𝑥1, … , 𝑥𝑇 ∝ 𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟
= 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟, 𝑥𝑡+1, … , 𝑥𝑇



Posterior Marginals

• Marginal inference question for HMMs

– State: What is the probability of  x and being in a state q at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞 = 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞)𝑝(𝑥𝑡+1 , … , 𝑥𝑇|𝑠𝑡 = 𝑞

– Transition: What is the probability of x and of transitioning from 

state q to r at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟

= 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞 𝜂(𝑞 ՜ 𝑟)𝛾(𝑟 ↓ 𝑥𝑡+1)𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡+1 = 𝑟)



Posterior Marginals

• Marginal inference question for HMMs

– State: What is the probability of  x and being in a state q at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞 = 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞)𝑝(𝑥𝑡+1 , … , 𝑥𝑇|𝑠𝑡 = 𝑞

– Transition: What is the probability of x and of transitioning from 

state q to r at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟

= 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞 𝜂(𝑞 ՜ 𝑟)𝛾(𝑟 ↓ 𝑥𝑡+1)𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡+1 = 𝑟)



Posterior Marginals

• Marginal inference question for HMMs

– State: What is the probability of  x and being in a state q at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞 = 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞)𝑝(𝑥𝑡+1 , … , 𝑥𝑇|𝑠𝑡 = 𝑞

– Transition: What is the probability of x and of transitioning from 

state q to r at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟

= 𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞 𝜂(𝑞 ՜ 𝑟)𝛾(𝑟 ↓ 𝑥𝑡+1)𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡+1 = 𝑟)



The Backward Probability

𝑃 𝑥𝑡+1, … , 𝑥𝑇, 𝑠𝑡+1 = 𝑟|𝑠𝑡 = 𝑞 =
𝜂(𝑞 ՜ 𝑠)𝛾 𝑠 ↓ 𝑥𝑡+1 𝑃 𝑥𝑡+2,… , 𝑥𝑇|𝑠𝑡+1 = 𝑟

𝑃 𝑥𝑡+1,… , 𝑥𝑇|𝑠𝑡 = 𝑞 =



Backward Algorithm

• Define 𝛽𝑡 𝑞 = 𝑃 𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡 = 𝑞

• Recursion

𝑃 𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡 = 𝑞 = ෍

𝑟

𝜂(𝑞 ՜ 𝑟)𝛾 𝑟 ↓ 𝑥𝑡+1 𝑃 𝑥𝑡+2, … , 𝑥𝑇|𝑠𝑡+1 = 𝑟



Backward Algorithm

• Start at the goal node(s) and work backwards
through the trellis



Backward Recurrence



Backward Chart



Backward Chart

i=5



Backward Chart

i=5



Backward Chart

i=5



Backward Chart

i=5

b



Backward Chart

i=5

b



Backward Chart

bc

i=3 i=4 i=5



Forward-Backward

• Compute forward chart

• Compute backward chart



Forward Backward
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The forward and backwards probabilities



Forward-Backward

• Compute forward chart

• Compute backward chart

= 𝑝(𝑆𝑇𝐴𝑅𝑇, 𝑥1, … , 𝑥𝑡 𝑦𝑡 = 𝑞 𝑝(𝑥𝑡+1, … , 𝑥𝑇 , 𝑆𝑇𝑂𝑃|𝑦𝑡 = 𝑞)



Edge probability

• What is the probability that x was generated 
and qr happened at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟 =

𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞

𝜂 𝑞 ՜ 𝑟 𝛾 𝑟 ↓ 𝑥𝑡+1
𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡+1 = 𝑟)



Edge probability

• What is the probability that x was generated 
and qr happened at time t?

𝑝 𝑥1, … , 𝑥𝑇 , 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟 =

𝑝 𝑥1, … , 𝑥𝑡 , 𝑠𝑡 = 𝑞

𝜂 𝑞 ՜ 𝑟 𝛾 𝑟 ↓ 𝑥𝑡+1
𝑝(𝑥𝑡+1, … , 𝑥𝑇|𝑠𝑡+1 = 𝑟)



Forward-Backward

a b b bc

i=1 i=2 i=3 i=4 i=5

𝑝 𝑥1,… , 𝑥𝑇, 𝑠𝑡 = 𝑞, 𝑠𝑡+1 = 𝑟 = 𝛼𝑡(𝑞)𝜂 𝑞 ՜ 𝑟 𝛾 𝑟 ՜ 𝑥𝑡+1 𝛽𝑡+1(𝑟)



Actual Marginals

• Edge Marginal

• Posterior Marginal



• The probability of any given state sequence is the product of the 
probabilities on all the edges representing the state sequence

– The probability of  a c c c b c b e is 0.1
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RECAP:  Inference from PFA



Recap: Inference on HMMs
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The forward and backwards probabilities



What we’ve done

• Able to answer questions about marginal distributions 
of components of finite-state models of language

– Finite state grammars

– HMMs

• E.g.  

– How probable is state q at time t, given x

• E.g. how likely is it that the second word in “John might watch” is 
an adjective

– How probable is the state transition qr at time t, given x
• E.g. how likely is it that “might watch” consists of an adjective 

followed by a verb



A different problem

• We’ve answered the following questions:

– How probable is state q at time t, given x

– How probable is the state transition qr at time t, given x

• More generic question:

– How probable is it that the process visited state q, given x

• Is there an adjective in “John might watch”?

– How probable is it that the transition qr occurred, given x

• Does the sentence have an adjective followed by a verb?



DET NN

ADJ

V

DET ADJ NN V

DET 0.0 0.0 0.0 0.5

ADJ 0.3 0.2 0.1 0.1

NN 0.7 0.7 0.3 0.2

V 0.0 0.1 0.4 0.1

0.0 0.0 0.2 0.1

Transition Probabilities:

DET ADJ NN V

0.5 0.1 0.3 0.1

Initial Probabilities:

V

might 0.2

watch 0.3

watches 0.2

loves 0.1

reads 0.19

books 0.01

NN

book 0.3

plants 0.2

people 0.2

person 0.1

John 0.1

watch 0.1

ADJ

green 0.1

big 0.4

old 0.4

might 0.1

DET

the 0.7

a 0.3

Emission Probabilities:

HMMs are PCFGs too

EXERCISE:  Convert this HMM to a PCFG



HMMPCFG

• Split a state into State-transition NT and State-
emission NT

𝑆 ՜ 𝑄𝑖 {𝑄𝑖 = 𝐴𝐷𝐽,𝑁𝑁,𝐷𝐸𝑇, 𝑉} 𝑃𝑖𝑛(𝑄𝑖)

𝑄𝑖 ՜ 𝐸𝑖𝑄𝑗 {𝑄𝑗 = 𝐴𝐷𝐽, 𝑁𝑁,𝐷𝐸𝑇, 𝑉, 𝑆𝑇𝑂𝑃} 𝑃(𝑄𝑗|𝑄𝑖)

𝐸𝑖 ՜ 𝑤𝑜𝑟𝑑 𝑃 𝑤𝑜𝑟𝑑 𝐸𝑖)

• Note:  We do not define the second rule for the 
𝑆𝑇𝑂𝑃 state



DET NN

ADJ

V

DET ADJ NN V

DET 0.0 0.0 0.0 0.5

ADJ 0.3 0.2 0.1 0.1

NN 0.7 0.7 0.3 0.2

V 0.0 0.1 0.4 0.1

0.0 0.0 0.2 0.1

Transition Probabilities:

DET ADJ NN V

0.5 0.1 0.3 0.1

Initial Probabilities:

V

might 0.2

watch 0.3

watches 0.2

loves 0.1

reads 0.19

books 0.01

NN

book 0.3

plants 0.2

people 0.2

person 0.1

John 0.1

watch 0.1

ADJ

green 0.1

big 0.4

old 0.4

might 0.1

DET

the 0.7

a 0.3

Emission Probabilities:

HMMs can be cast as PFAs too

EXERCISE:  Convert this HMM to a PFA



HMMPFA

• First, recall an earlier grammar



Inference in a PFA

• We aren’t interested in state sequences which end in 𝜙. 

– So no need to explicitly represent it

0.1

0.2

0.3

0.4 0.5

0.1

1.0

1.0

1.0

10.4

11.0

𝜙

0
1.0

01.0

0
1.0

0
1.0

1
1.0

0
1.0

1
1.0



HMMPFA: Back to our grammar

• Let 𝑄 = {𝐴𝐷𝐽,𝑁𝑁, 𝑉, 𝐷𝐸𝑇, 𝑆𝑇𝑂𝑃}

• Let 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑁 , ∎}

– ∎ is a termination symbol to signify end of 

sentence

• PFA:

𝜋 𝑄𝑖 = 𝑃𝑖𝑛 𝑄𝑖



A different problem

• We’ve answered the following questions:

– How probable is state q at time t, given x

– How probable is the state transition qr at time t, 
given x

• More generic question:

– How probable is it that the process visited state q, 
given x

• E.g. does the sentence have an adjective



0

0

0.1

0

JOHN

0

0.1

0

0.3

MIGHT

DET

ADJ

NN

V

WATCH

Visiting a state

• 𝑃(𝑠𝑡𝑎𝑡𝑒 𝑠 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, 𝐱) is the probability that 𝑠 is visited at least once.

– E.g.  “What is the probability that at least one of the words is an adjective

• This is the total probability of the subset of the trellis where every path 
from start to end visits state 𝑠 (e.g. ADJ) at least once

– Its generally difficult or impossible to isolate this portion of the trellis



Derivation by ablation

• 𝑝 𝐱 = 𝑝 𝑠, 𝐱 + 𝑝 ҧ𝑠, 𝐱

– 𝑠 = state 𝑠 is visited at least once

– ҧ𝑠 = state 𝑠 is never visited

• 𝑝 𝑠, 𝐱 = 𝑝 𝐱 − 𝑝 ҧ𝑠, 𝐱



0

0.1

0

JOHN

0

0

0.3

MIGHT

DET

NN

V

WATCH

Not visiting a state

• The portion of the trellis where no path visits state 𝑠

– This is complete; there are no other paths that do not visit 𝑠



0

0.1

0

JOHN

0

0

0.3

MIGHT

DET

NN

V

WATCH

Not visiting a state

• The portion of the trellis where no path visits state 𝑠

– This is complete; there are no other paths that do not visit 𝑠

– The total probability of this trellis is 𝑝 ҧ𝑠,𝐱

• Can  be computed using the forward algorithm on this trellis



Derivation by ablation

• 𝑝 𝐱 = 𝑝 𝑠, 𝐱 + 𝑝 ҧ𝑠, 𝐱

– 𝑠 = state 𝑠 is visited at least once

– ҧ𝑠 = state 𝑠 is never visited

• 𝑝 𝑠, 𝐱 = 𝑝 𝐱 − 𝑝 ҧ𝑠, 𝐱

Computed by the 
forward algorithm on 
the complete trellis

Computed by the 
forward algorithm on 
the reduced trellis



A different problem

• We’ve answered the following questions:
– How probable is state q at time t, given x

– How probable is the state transition qr at time t, 
given x

• More generic question:
– How probable is it that the process visited state q, 

given x

– How probable is it that the transition qr occurred, 
given x
• E.g. Is an adjective followed by a verb in this sentence?



0

0

0.1

0

JOHN

0

0.1

0

0.3

MIGHT

DET

ADJ

NN

V

WATCH

Visiting a transition

• This is the total probability of all paths that 

use the shown transition

– No possible to isolate this portion of the trellis



0

0

0.1

0

JOHN

0

0.1

0

0.3

MIGHT

DET

ADJ

NN

V

WATCH

Not visiting a transition

• Delete the transition and compute the total 
probability of the remaining trellis

– 𝑝(𝐱, 𝑠𝑡𝑎𝑡𝑒 𝑞 𝑖𝑠 𝑛𝑒𝑣𝑒𝑟 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑑 𝑏𝑦 𝑠𝑡𝑎𝑡𝑒 𝑟)



More complex inferences

• What is the probability that both state s AND 
state r were visited?

– What is the probability that “John might watch” 
includes both a verb and an adjective?



0

0

0.1

0

JOHN

0

0.1

0

0.3

MIGHT

DET

ADJ

NN

V

WATCH

Visiting multiple states

• Total probability of all paths that visit both the blue and 
green states

– Again, not possible to isolate the corresponding portion of the 
trellis



0 0.3 V

0 0.1 ADJ

0

0.1

JOHN

0

0

MIGHT

DET

NN

WATCH

NOT visiting multiple states

• All paths that visit neither state



More complex inferences

• What is the probability that both state s AND 
state r were visited?
𝑝 𝑠 ∩ 𝑟 = 1 − 𝑝 ҧ𝑠 + 𝑝 ҧ𝑟 − 𝑝(𝑠 ∪ 𝑟)

𝑃 𝑠 , 𝑟, 𝐱

= 𝑃 𝐱 − 𝑃 ҧ𝑠, 𝐱 + 𝑃 ҧ𝑟, 𝐱 − 𝑃(𝑠 ∪ 𝑟, 𝐱)



More complex inferences

• What is the probability that both state s AND 
state r were visited?
𝑝 𝑠 ∩ 𝑟 = 1 − 𝑝 ҧ𝑠 + 𝑝 ҧ𝑟 − 𝑝(𝑠 ∪ 𝑟)

𝑃 𝑠 , 𝑟, 𝐱

= 𝑃 𝐱 − 𝑃 ҧ𝑠, 𝐱 + 𝑃 ҧ𝑟, 𝐱 − 𝑃(𝑠 ∪ 𝑟, 𝐱)
Computed from the Trellis
with the s row removed

Computed from the Trellis
with the r row removed

Computed from the Trellis
with both s and r rows removed

Computed from the full Trellis



More complex inferences

• Other more complex inferences can be 

similarly obtained

• Becomes increasingly more computationally 

expensive as the order of the inference 

increases



Higher-level grammars

• We have derived probabilistic inferences from PFAs and HMMs

• More generally we want similar inferences from CFGs and PCFGs

– Given word sequence w, what is the probability of having a 
constituent of type Z from i to j?

• ‘A person who trusts no one can’t be trusted’  : what is the probability that the 
“A person who trusts no one” is a noun phrase?

– Given w, what is the probability of having a constituent of any type 
from i to j?

• What is the probability that ̀ A person…trusted’ is any type of phrase

– Given w, what is the probability of using rule Z -> XY to derive the span 
from i to j?
• What is the probability that VP  V N generated “can’t be trusted”

• That will require a generalization of the algorithms we just saw..



Generalizing Forward-Backward

• Inference in HMMs was performed using the 
forward-backward algorithm

– Recall that HMMs are instances of PCFGs

• For more general PCFGs we will use the inside-
outside algorithm

– A generalization of the forward backward 
algorithm

– Builds upon the CKY algorithm



Inside/Outside Algorithm

• “Trainable grammars for speech recognition,” J. K. 
Baker, 1979

Have you seen this man somewhere?



Inferences we would like to make..

• What is the probability of “dogs in houses and cats”?

• What is the probability that “houses and cats” is a clause by itself?

– What is the probability that its an NP?

• Is there a PP in the sentence?



Inferences we would like to make..

• Which of the probability of “dogs in houses and cats”

– P(“dogs in houses and cats”)

• What is the probability that “houses and cats” is a clause by itself?

– P(“houses and cats” = clause | “dogs in houses and cats”)

• What is the probability that its an NP?

– P(“houses and cats” = NP | “dogs in houses and cats”)

• Is there a PP in the sentence?

– P(PP | “dogs in houses and cats”)



Recall the CKY algorithm

• Given: A PCFG in CNF, and a word sequence

• Build a skeleton that can hold every possible 
tree

w1 w2 w3 w4 w5 w6 w7 w8

𝑅0 ∶ 𝑆 ՜ 𝑁𝑇1 𝑁𝑇2 [𝑃 𝑅0 ]
𝑅1 ∶ 𝑁𝑇1 ՜ 𝑁𝑇3 𝑁𝑇4 [𝑃 𝑅1 ]
𝑅2 ∶ 𝑁𝑇2 ՜ 𝑁𝑇5 𝑁𝑇6 [𝑃 𝑅2 ]

. .
𝑅𝑘 ∶

𝑁𝑇𝑘 ՜ 𝑤1 [𝑃 𝑅𝑘 ]
𝑅𝑙 ∶

𝑁𝑇𝑙 ՜ 𝑤2 [𝑃 𝑅𝑙 ]
. .



Recall the CKY algorithm

• Each box in the grid (potentially) holds every 
non-terminal

w1 w2 w3 w4 w5 w6 w7 w8

S
NT1

NT2

..
NTl

..

𝑅0 ∶ 𝑆 ՜ 𝑁𝑇1 𝑁𝑇2 [𝑃 𝑅0 ]
𝑅1 ∶ 𝑁𝑇1 ՜ 𝑁𝑇3 𝑁𝑇4 [𝑃 𝑅1 ]
𝑅2 ∶ 𝑁𝑇2 ՜ 𝑁𝑇5 𝑁𝑇6 [𝑃 𝑅2 ]

. .
𝑅𝑘 ∶

𝑁𝑇𝑘 ՜ 𝑤1 [𝑃 𝑅𝑘 ]
𝑅𝑙 ∶

𝑁𝑇𝑙 ՜ 𝑤2 [𝑃 𝑅𝑙 ]
. .



Inferences we would like to make..

• Which of the probability of “dogs in houses and cats”

– P(“dogs in houses and cats”)

• What is the probability that “houses and cats” is a clause by itself?

– P(“houses and cats” = clause | “dogs in houses and cats”)

• What is the probability that its an NP?

– P(“houses and cats” = NP | “dogs in houses and cats”)

• Is there a PP in the sentence?

– P(PP | “dogs in houses and cats”)



Probability computation using CKY

• What we desire to compute:

– 𝑃(𝑤1, … ,𝑤𝑁) : Probability of producing the word 

sequence

• Total possibility of every possible tree that could produce the 

word sequence

w1 w2 w3 w4 w5 w6 w7 w8

𝑅0 ∶ 𝑆 ՜ 𝑁𝑇1 𝑁𝑇2 [𝑃 𝑅0 ]
𝑅1 ∶ 𝑁𝑇1 ՜ 𝑁𝑇3 𝑁𝑇4 [𝑃 𝑅1 ]
𝑅2 ∶ 𝑁𝑇2 ՜ 𝑁𝑇5 𝑁𝑇6 [𝑃 𝑅2 ]

. .
𝑅𝑘 ∶

𝑁𝑇𝑘 ՜ 𝑤1 [𝑃 𝑅𝑘 ]
𝑅𝑙 ∶

𝑁𝑇𝑙 ՜ 𝑤2 [𝑃 𝑅𝑙 ]
. .



The Inside Algorithm

• Let 𝛼(𝑁𝑇, 𝑖, 𝑗) be the probability that the non-terminal 𝑁𝑇

produced words 𝑤𝑖…𝑤𝑗 (at the word positions 𝑖 … 𝑗 within 

the sentence)

– 𝛼 𝑁𝑇, 𝑖, 𝑗 = 𝑝 𝑁𝑇 ՜ 𝑤𝑖 …𝑤𝑗 = 𝑝 𝑤𝑖 …𝑤𝑗|𝑐 𝑖, 𝑗 = 𝑁𝑇

w1 w2 w3 w4 w5 w6 w7 w8

𝑅0 ∶ 𝑆 ՜ 𝑁𝑇1 𝑁𝑇2 [𝑃 𝑅0 ]
𝑅1 ∶ 𝑁𝑇1 ՜ 𝑁𝑇3 𝑁𝑇4 [𝑃 𝑅1 ]
𝑅2 ∶ 𝑁𝑇2 ՜ 𝑁𝑇5 𝑁𝑇6 [𝑃 𝑅2 ]

. .
𝑅𝑘 ∶

𝑁𝑇𝑘 ՜ 𝑤1 [𝑃 𝑅𝑘 ]
𝑅𝑙 ∶

𝑁𝑇𝑙 ՜ 𝑤2 [𝑃 𝑅𝑙 ]
. .

S
NT1

NT2

..
NTi

..

𝛼(𝑆, 3,5)

𝛼(𝑁𝑇1,3,5)

𝛼(𝑁𝑇2,3,5)

𝛼(𝑁𝑇𝑖, 3,5)



• Ways in which NT could occur at (𝑖, 𝑗)

S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

w1 w2 w3 w4 w5 w6 w7 w8



• Ways in which NT could occur at (𝑖, 𝑗)

S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

w1 w2 w3 w4 w5 w6 w7 w8

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..



• Ways in which NT could occur at (𝑖, 𝑗)

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

Each edge represents an
ordered pairing of NTs from the
corresponding cells

S (or any other orange NT) may expand out
to any of the edges
(This dependency could be represented by
a three-way hyperedge)

[3,5]

[3,4]

[3,3]

[5,5]

[4,5]



S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

Each edge represents an
ordered pairing of NTs from the
corresponding cells

S (or any other orange NT) may expand out
to any of the edges
(This dependency could be represented by
a three-way hyperedge)

[3,4]

[3,3]

[5,5]

[4,5]

𝑃 𝑆 ՜ 𝑤3 …𝑤5 = 𝑃 𝑆 ՜ 𝑆 𝑆 𝑃 𝑆 ՜ 𝑤3…𝑤4 𝑃(𝑆 ՜ 𝑤5) + ⋯

[3,5]



S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

Each edge represents an
ordered pairing of NTs from the
corresponding cells

S (or any other orange NT) may expand out
to any of the edges
(This dependency could be represented by
a three-way hyperedge)

[3,4]

[3,3]

[5,5]

[4,5]

𝑃 𝑆 ՜ 𝑤3…𝑤5 = ෍

𝑁𝑇

𝑃 𝑆 ՜ 𝑆 𝑁𝑇 𝑃 𝑆 ՜ 𝑤3…𝑤4 𝑃(𝑁𝑇 ՜ 𝑤5) +⋯

[3,5]



• Ways in which NT could occur at (𝑖, 𝑗)

S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

w1 w2 w3 w4 w5 w6 w7 w8

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..



S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

Each edge represents an
ordered pairing of NTs from the
corresponding cells

S (or any other orange NT) may expand out
to any of the edges
(This dependency could be represented by
a three-way hyperedge)

[3,4]

[3,3]

[5,5]

[4,5]

𝑃 𝑆 ՜ 𝑤3…𝑤5 = ෍

𝑁𝑇𝑎

෍

𝑁𝑇𝑏

𝑃 𝑆 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤3…𝑤4 𝑃(𝑁𝑇𝑏 ՜ 𝑤5) +⋯



S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

w1 w2 w3 w4 w5 w6 w7 w8

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

𝑃 𝑆 ՜ 𝑤3…𝑤5 = ෍

𝑁𝑇𝑎 ,

෍

𝑁𝑇𝑏

𝑃 𝑆 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤3 …𝑤4 𝑃(𝑁𝑇𝑏 ՜ 𝑤5) +⋯



S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

Each edge represents an
ordered pairing of NTs from the
corresponding cells

S (or any other orange NT) may expand out
to any of the edges
(This dependency could be represented by
a three-way hyperedge)

[3,4]

[3,3]

[5,5]

[4,5]

𝑝 𝑆 ՜ 𝑤3 …𝑤5 = ෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑆 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤3…𝑤4 𝑃(𝑁𝑇𝑏 ՜ 𝑤5) +

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑆 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤3 𝑃(𝑁𝑇𝑏 ՜ 𝑤4…𝑤5)



S
NT1

NT2

..
NTi

..

𝛼(𝑆, 𝑖, 𝑗)

𝛼(𝑁𝑇1, 𝑖, 𝑗)

𝛼(𝑁𝑇2, 𝑖, 𝑗)

𝛼(𝑁𝑇𝑖, 𝑖, 𝑗)

w1 w2 w3 w4 w5 w6 w7 w8

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

S
NT1

NT2

..
NTi

..

𝑝 𝑆 ՜ 𝑤3 …𝑤5 = ෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑆 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤3…𝑤4 𝑃(𝑁𝑇𝑏 ՜ 𝑤5) +

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑆 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤3 𝑃(𝑁𝑇𝑏 ՜ 𝑤4…𝑤5)



More generally

w1 w2 w3 w4 w5 w6 w7 w8

𝑝 𝑁𝑇 ՜ 𝑤𝑖 …𝑤𝑗 = ෍

𝑘

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝑃 𝑁𝑇𝑎 ՜ 𝑤𝑖 …𝑤𝑘 𝑃(𝑁𝑇𝑏 ՜ 𝑤𝑘+1…𝑤𝑗)

𝛼 𝑁𝑇, 𝑖, 𝑗 = ෍

𝑖≤𝑘≤𝑗

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝛼 𝑁𝑇𝑎, 𝑖, 𝑘 𝛼(𝑁𝑇𝑏 , 𝑘 + 1, 𝑗)



The Inside Algorithm

w1 w2 w3 w4 w5 w6 w7 w8

For i = 1..N
For all NT:

𝛼 𝑁𝑇, 𝑖, 𝑖 = 𝑃(𝑁𝑇 ՜ 𝑤𝑖)



The Inside Algorithm

w1 w2 w3 w4 w5 w6 w7 w8

For 𝑖 = 1. . 𝑁
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑖 = 𝑃(𝑁𝑇 ՜ 𝑤𝑖)

For 𝑙 = 1. . 𝑁 − 1
For 𝑖 = 1. . 𝑁 − 𝑙

𝑗 = 𝑖 + 𝑙
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑗 = ෍

𝑖≤𝑘≤𝑗

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝛼 𝑁𝑇𝑎, 𝑖, 𝑘 𝛼(𝑁𝑇𝑏 , 𝑘 + 1, 𝑗)



The Inside Algorithm

w1 w2 w3 w4 w5 w6 w7 w8

For 𝑖 = 1. . 𝑁
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑖 = 𝑃(𝑁𝑇 ՜ 𝑤𝑖)

For 𝑙 = 1. . 𝑁 − 1
For 𝑖 = 1. . 𝑁 − 𝑙

𝑗 = 𝑖 + 𝑙
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑗 = ෍

𝑖≤𝑘≤𝑗

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝛼 𝑁𝑇𝑎, 𝑖, 𝑘 𝛼(𝑁𝑇𝑏 , 𝑘 + 1, 𝑗)



The Inside Algorithm

w1 w2 w3 w4 w5 w6 w7 w8

For 𝑖 = 1. . 𝑁
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑖 = 𝑃(𝑁𝑇 ՜ 𝑤𝑖)

For 𝑙 = 1. . 𝑁 − 1
For 𝑖 = 1. . 𝑁 − 𝑙

𝑗 = 𝑖 + 𝑙
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑗 = ෍

𝑖≤𝑘≤𝑗

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝛼 𝑁𝑇𝑎, 𝑖, 𝑘 𝛼(𝑁𝑇𝑏 , 𝑘 + 1, 𝑗)



The Inside Algorithm

w1 w2 w3 w4 w5 w6 w7 w8

For 𝑖 = 1. . 𝑁
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑖 = 𝑃(𝑁𝑇 ՜ 𝑤𝑖)

For 𝑙 = 1. . 𝑁 − 1
For 𝑖 = 1. . 𝑁 − 𝑙

𝑗 = 𝑖 + 𝑙
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑗 = ෍

𝑖≤𝑘≤𝑗

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝛼 𝑁𝑇𝑎, 𝑖, 𝑘 𝛼(𝑁𝑇𝑏 , 𝑘 + 1, 𝑗)



The Inside Algorithm

w1 w2 w3 w4 w5 w6 w7 w8

𝑃 𝑤1…𝑤𝑁 = 𝛼 𝑆, 1,𝑁
For 𝑖 = 1. . 𝑁

For all 𝑁𝑇:
𝛼 𝑁𝑇, 𝑖, 𝑖 = 𝑃(𝑁𝑇 ՜ 𝑤𝑖)

For 𝑙 = 1. . 𝑁 − 1
For 𝑖 = 1. . 𝑁 − 𝑙

𝑗 = 𝑖 + 𝑙
For all 𝑁𝑇:

𝛼 𝑁𝑇, 𝑖, 𝑗 = ෍

𝑖≤𝑘≤𝑗

෍

𝑁𝑇𝑎,

෍

𝑁𝑇𝑏

𝑃 𝑁𝑇 ՜ 𝑁𝑇𝑎𝑁𝑇𝑏 𝛼 𝑁𝑇𝑎, 𝑖, 𝑘 𝛼(𝑁𝑇𝑏 , 𝑘 + 1, 𝑗)



Inferences we would like to make..

• Which of the probability of “dogs in houses and cats”

– P(“dogs in houses and cats”)

• What is the probability that “houses and cats” is a clause by itself?

– P(“houses and cats” = clause | “dogs in houses and cats”)

• What is the probability that its an NP?

– P(“houses and cats” = NP | “dogs in houses and cats”)

• Is there a PP in the sentence?

– P(PP | “dogs in houses and cats”)



Inferences we would like to make..

• Which of the probability of “dogs in houses and cats”

– P(“dogs in houses and cats”)

• What is the probability that “houses and cats” is a clause by itself?

– P(“houses and cats” = clause | “dogs in houses and cats”)

• What is the probability that its an NP?

– P(“houses and cats” = NP | “dogs in houses and cats”)

• Is there a PP in the sentence?

– P(PP | “dogs in houses and cats”)

For all 𝑁𝑇:
𝛽 𝑁𝑇, 1,𝑁 = 1



The Conditional Probability

• What we desire to compute:

– 𝑃(𝑁𝑇 ∈ 𝑐 𝑖, 𝑗 |𝑊) : Probability that the cell spanning words 
𝑖 … 𝑗 contains the specific nonterminal 𝑁𝑇,  given the observed 
word sequence 𝑊

• The probability that 𝑤𝑖…𝑤𝑗 were produced by 𝑁𝑇 given the entire word 

sequence 𝑊

w1 w2 w3 w4 w5 w6 w7 w8

NT



Conditional vs Joint

• We know how to compute the denominator

• So we must compute:
𝑃 𝑁𝑇 ∈ 𝑐 𝑖, 𝑗 ,𝑊



The Joint Probability

• 𝑃(𝑁𝑇 ∈ 𝑐 𝑖, 𝑗 ,𝑤1…𝑤𝑁) is the total probability of the entire word 
sequence AND that cell 𝑐 𝑖, 𝑗 contains 𝑁𝑇

𝑃 𝑁𝑇 ∈ 𝑐 𝑖, 𝑗 ,𝑤1…𝑤𝑁 = 𝑃 𝑁𝑇 ՜ 𝑤𝑖…𝑤𝑗 ,𝑤1…𝑤𝑁

= 𝑃 𝑁𝑇 ՜ 𝑤𝑖…𝑤𝑗 ,𝑤1…𝑤𝑖−1, 𝑤𝑗+1…𝑤𝑁

w1 w2 w3 w4 w5 w6 w7 w8

NT



The Joint Probability

• 𝑃 𝑁𝑇 ՜ 𝑤𝑖…𝑤𝑗,𝑤1 …𝑤𝑖−1, 𝑤𝑗+1 …𝑤𝑁 =

𝑃 𝑁𝑇 ՜ 𝑤𝑖…𝑤𝑗)𝑃(𝑤1…𝑤𝑖−1, 𝑤𝑗+1…𝑤𝑁, 𝑐 𝑖, 𝑗 = 𝑁𝑇

• Note:  The second term on the RHS explicitly takes advantage of the fact that for 
a CFG the NT isolates the rest of the sentence from the words produced by the 
NT

w1 w2 w3 w4 w5 w6 w7 w8

NT



The Joint Probability

• 𝑃 𝑁𝑇 ՜ 𝑤𝑖…𝑤𝑗,𝑤1 …𝑤𝑖−1, 𝑤𝑗+1 …𝑤𝑁 =

𝑃 𝑁𝑇 ՜ 𝑤𝑖…𝑤𝑗)𝑃(𝑤1…𝑤𝑖−1, 𝑤𝑗+1…𝑤𝑁, 𝑐 𝑖, 𝑗 = 𝑁𝑇

• Note:  The second term on the RHS explicitly takes advantage of the fact that for 
a CFG the NT isolates the rest of the sentence from the words produced by the 
NT

w1 w2 w3 w4 w5 w6 w7 w8

NT
We need to compute
this



The Outside Probability

• 𝑃 𝑤1…𝑤𝑖−1, 𝑤𝑗+1…𝑤𝑁 , 𝑐 𝑖, 𝑗 = 𝑁𝑇

– The probability of the words under the white region of 

the grid, conditioned on the pink node taking value NT

w1 w2 w3 w4 w5 w6 w7 w8

NT



The Outside Probability

• Option 1:  NT is part of a tree with a root at the Brown 
cell (w2 .. w7)

– w8 is not part of the tree

– Must generate w1..w2, w8 outside the tree

w1 w2 w3 w4 w5 w6 w7 w8

NT

𝑃(𝑤1…𝑤𝑖−1 , 𝑤𝑗+1…𝑤𝑁 , 𝑐 𝑖, 𝑗 = 𝑁𝑇)

Need probability of white region
given the pink NT



The Outside Probability

• Option 1:  NT is part of a tree with a root equal to S at the Brown cell

𝑃 𝑤1…𝑤2, 𝑤7…𝑤8, 𝑐 3,6 = 𝑁𝑇 =

w1 w2 w3 w4 w5 w6 w7 w8

NT

𝑃(𝑤1…𝑤𝑖−1 , 𝑤𝑗+1…𝑤𝑁 , 𝑐 𝑖, 𝑗 = 𝑁𝑇)

Need probability of white region
given the pink NT

S
NT1

NT2

..
NTi

..
S

NT1

NT2

..
NTi

..

Outside probability of (3,7)



The Outside Probability

• Option 1:  NT is part of a tree with a root at the Brown cell

𝑃 𝑤1…𝑤2, 𝑤7…𝑤8, 𝑐 3,6 = 𝑁𝑇 =

w1 w2 w3 w4 w5 w6 w7 w8

NT

𝑃(𝑤1 …𝑤𝑖−1, 𝑤𝑗+1…𝑤𝑁 |𝑐 𝑖, 𝑗 = 𝑁𝑇)

Need probability of white region
given the pink NT

S
NT1

NT2

..
NTi

..
S

NT1

NT2

..
NTi

..



The Outside Probability

• Option 2:  NT is part of a tree with a root at the Green cell

– Note the counterpart cell of NT under the green root

w1 w2 w3 w4 w5 w6 w7

NT

𝑃 𝑤1…𝑤2, 𝑤7…𝑤8, 𝑐 3,6 = 𝑁𝑇 =

w8



The Outside Probability

• Option 2:  NT is part of a tree with a root at the Green cell

– Note the counterpart cell of NT under the green root

w1 w2 w3 w4 w5 w6 w7

NT

𝑃 𝑤1…𝑤2, 𝑤7…𝑤8, 𝑐 3,6 = 𝑁𝑇 =

෍

𝑁𝑇𝑎

𝑃 𝑤1…𝑤2, 𝑐 3,8 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇 𝑁𝑇𝑏 𝑃(𝑁𝑇𝑏 ՜ 𝑤7…𝑤8) + ⋯

w8

NTb

NTa



The Outside Probability

• Option 2:  NT is part of a tree with a root at the Green cell

– Note the counterpart cell of NT under the green root

w1 w2 w3 w4 w5 w6 w7

NT

w8

𝑃 𝑤1…𝑤2, 𝑤7…𝑤8, 𝑐 3,6 = 𝑁𝑇 =

෍

𝑁𝑇𝑎

𝑃 𝑤1…𝑤2, 𝑐 3,8 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇 𝑁𝑇𝑏 𝑃(𝑁𝑇𝑏 ՜ 𝑤7…𝑤8) + ⋯



The Outside Probability

• Option 2:  NT is part of a tree with a root at the Green cell

– Note the counterpart cell of NT under the green root

w1 w2 w3 w4 w5 w6 w7

NT

𝑃 𝑤1 …𝑤2 , 𝑤7 …𝑤8 , 𝑐 3,6 = 𝑁𝑇 =

+⋯

w8

NTa

NTb

Note, if 𝑘 + 1 > 8, this just 
becomes 𝑤1…𝑤2



The Outside Probability

• Option 3:  NT is part of a tree with a root at the purple cell

– Note the counterpart cell of NT under the purple root

– Now the outside part is w1,  w7…w8

w1 w2 w3 w4 w5 w6 w7

NT

w8

𝑃 𝑤1 …𝑤2 , 𝑤7 …𝑤8 , 𝑐 3,6 = 𝑁𝑇 =

+෍

𝑁𝑇𝑎

𝑃 𝑤1 , 𝑤7 …𝑤8 , 𝑐 2,6 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇𝑏𝑁𝑇 𝑃(𝑁𝑇𝑏 ՜ 𝑤2) + ⋯

NTa

NTb



The Outside Probability

• Option 4:  NT is part of a tree with a root at the blue cell

– Note the counterpart cell of NT under the blue root

– Now the outside part is w7…w8

w1 w2 w3 w4 w5 w6 w7

NT

w8

𝑃 𝑤1 …𝑤2 , 𝑤7 …𝑤8 , 𝑐 3,6 = 𝑁𝑇 =

+෍

𝑁𝑇𝑎

𝑃 𝑤1 , 𝑤7 …𝑤8 , 𝑐 2,6 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇𝑏𝑁𝑇 𝑃(𝑁𝑇𝑏 ՜ 𝑤2)

+෍

𝑁𝑇𝑎

𝑃 𝑤7…𝑤8 , 𝑐 1,6 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇𝑏𝑁𝑇 𝑃(𝑁𝑇𝑏 ՜ 𝑤1 …𝑤2)

NTa

NTb



𝑃 𝑤1 …𝑤2 , 𝑤7 …𝑤8 , 𝑐 3,6 = 𝑁𝑇 =

+෍

𝑁𝑇𝑎

𝑃 𝑤1 , 𝑤7 …𝑤8 , 𝑐 2,6 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇𝑏𝑁𝑇 𝑃(𝑁𝑇𝑏 ՜ 𝑤2)

+෍

𝑁𝑇𝑎

𝑃 𝑤7…𝑤8 , 𝑐 1,6 = 𝑁𝑇𝑎 ෍

𝑁𝑇𝑏

𝑃 𝑁𝑇𝑎 ՜ 𝑁𝑇𝑏𝑁𝑇 𝑃(𝑁𝑇𝑏 ՜ 𝑤1 …𝑤2)

The Outside Probability

• Option 4:  NT is part of a tree with a root at the blue cell

– Note the counterpart cell of NT under the blue root

– Now the outside part is w7…w8

w1 w2 w3 w4 w5 w6 w7

NT

w8

NTa

NTb



The Outside Probability

• Option 4:  NT is part of a tree with a root at the blue cell

– Note the counterpart cell of NT under the blue root

– Now the outside part is w7…w8

w1 w2 w3 w4 w5 w6 w7

NT

w8

𝑃 𝑤1…𝑤2 , 𝑤7…𝑤8 , 𝑐 3,6 = 𝑁𝑇 =

NTa

NTb

Note, if 𝑘 < 1, this just 
becomes 𝑤7…𝑤8



The Outside Probability

• Generic equation

w1 w2 w3 w4 w5 w6 w7

NT

w8

𝑃 𝑤1 …𝑤𝑖−1 , 𝑤𝑗+1…𝑤𝑁, 𝑐 𝑖, 𝑗 = 𝑁𝑇 =

NTa

NTb



𝑃 𝑤1 …𝑤𝑖−1 , 𝑤𝑗+1…𝑤𝑁, 𝑐 𝑖, 𝑗 = 𝑁𝑇 =

The Outside Probability
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The Outside Probability

• Note: The computation of any outside probability 𝛽depends only on other betas above it 
and alphas below it

– Beta computation requires preliminary computation of inside probabilities (alphas)

– Given alpha, betas can now be computed recursively 

NT

NTa

NTb
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Inferences we would like to make..

• Which of the probability of “dogs in houses and cats”

– P(“dogs in houses and cats”)

• What is the probability that “houses and cats” is a clause by itself?

– P(“houses and cats” = clause | “dogs in houses and cats”)

• What is the probability that its an NP?

– P(“houses and cats” = NP | “dogs in houses and cats”)

• Is there a PP in the sentence?

– P(PP | “dogs in houses and cats”)



Posterior Marginal

𝑃 𝑐 𝑖, 𝑗 = 𝑁𝑇,𝑤1…𝑤𝑁 = α(𝑁𝑇, 𝑖, 𝑗)𝛽(𝑁𝑇, 𝑖, 𝑗)

• The posterior marginal is:
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Posterior Marginal

• The posterior marginal that 𝑤𝑖…𝑤𝑗 is a 
constituent:
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Rule marginals



Inferences we would like to make..

• Does the sentence have both a VP and a PP?

– Exercise for you..



Posterior Marginals

• Marginal inference question for PCFGs

– Given w, what is the probability of having a 
constituent of type Z from i to j?

– Given w, what is the probability of having a 
constituent of any type from i to j?

– Given w, what is the probability of using rule
Z -> XY to derive the span from i to j?



In Conclusion

• Have looked at a few ways of arriving at posterior marginal 
inferences for fininte-state and context-free grammars

• Similar approach extends to dependency grammars

– If you can use DP and you can write probabilistic rules, you can 
derive probabilistic inferences

• Possibly one of the biggest uses for these methods is 
learning

– Applicable in EM methods to learn grammars

– Not a topic for today..


